Skip to main content

Advertisement

Log in

Using catchment characteristics to model seasonality of dissolved organic carbon fluxes in semi-arid mountainous headwaters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Prediction of dissolved organic carbon (DOC) based on catchment characteristics is a useful tool for efficient and effective water management, but in the case of arid and semi-arid regions, such predictive capacity is scarce. Accordingly, the main objective of this study was to evaluate the significance of principal components for predicting DOC concentrations and fluxes in nine headwater catchments of the Hiv catchment located in the Southern Alborz Mountains in the west of Tehran, Iran. To achieve this aim, data were assembled on 24 headwater catchment characteristics comprising soil properties, physiography, seasonal rainfall, and flow attributes, as well as estimates of DOC concentrations and fluxes across four seasons. The results revealed a major positive correlation between DOC and soil organic matter parameters related to soil biological processes. Using general linear modelling, an organic matter component related to soil biology, a seasonal component related to the dummy effect of sampling seasons, and a soil physical component related to soil texture were found to be the best predictors for DOC responses in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ågren, A., Buffam, I., Bishop, K., Laudon, H. (2010). Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: A simple empirical approach for regional predictions. Journal of Geophysical Research: Biogeosciences 115. https://doi.org/10.1029/2009JG001013.

  • Aitkenhead, J. A., & McDowell, W. H. (2000). Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles, 14, 127–138. https://doi.org/10.1029/1999gb900083.

    Article  CAS  Google Scholar 

  • Aitkenhead, J. A., Hope, D., & Billett, M. F. (1999). The relationship between dissolved organic carbon in stream water and soil organic carbon pools at different spatial scales. Hydrological Processes, 13, 1289–1302.

    Google Scholar 

  • Aitkenhead, M. J., Aitkenhead-Peterson, J. A., McDowell, W. H., Smart, R. P., & Cresser, M. S. (2007). Modelling DOC export from watersheds in Scotland using neural networks. Computers & Geosciences, 33, 423–436.

    Google Scholar 

  • Aitkenhead-Peterson, J.A., Alexander, J.E., Clair, T.A. (2005). Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Nova Scotia: Identifying controlling factors. Global Biogeochemical Cycles 19. https://doi.org/10.1029/2004GB002438.

  • Aitkenhead-Peterson, J.A., Smart, R.P., Aitkenhead, M.J., Cresser, M.S., McDowell, W.H. (2007). Spatial and temporal variation of dissolved organic carbon export from gauged and ungauged watersheds of Dee Valley, Scotland: Effect of land cover and C:N Water Resources Research 43.

  • Aitkenhead-Peterson, J. A., Steele, M. K., Nahar, N., & Santhy, K. (2009). Dissolved organic carbon and nitrogen in urban and rural watersheds of south-central Texas: Land use and land management influences. Biogeochemistry, 96, 119–129.

    CAS  Google Scholar 

  • Alef, K., & Nannipieri, P. (1995). Urease activity. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 316–320). San Diego: Academic Press Inc.

    Google Scholar 

  • Bandick, A. K., & Dick, R. P. (1999). Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31, 1471–1479.

    CAS  Google Scholar 

  • Brunet, F., Dubois, K., Veizer, J., Ndondo, G. N., Ngoupayou, J. N., Boeglin, J.-L., & Probst, J.-L. (2009). Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroon. Chemical Geology, 265, 563–572.

    CAS  Google Scholar 

  • Buckingham, S., Tipping, E., & Hamilton-Taylor, J. (2008). Concentrations and fluxes of dissolved organic carbon in UK topsoils. Science of the Total Environment, 407, 460–470.

    CAS  Google Scholar 

  • Cassel, D. K., & Nielsen, D. R. (1986). Field capacity and available water capacity. In A. Klute (Ed.), Methods of soil analysis part 1. Soil physical properties. Agron. Monogr. 9 (pp. 901–924). Madison: ASA and SSSA.

    Google Scholar 

  • Chaer, G. M., Myrold, D. D., & Bottomley, P. J. (2009). A soil quality index based on the equilibrium between soil organic matter and biochemical properties of undisturbed coniferous forest soils of the Pacific Northwest. Soil Biology and Biochemistry, 41, 822–830.

    CAS  Google Scholar 

  • Chow, A. T., O'Geen, A. T., Dahlgren, R. A., Díaz, F. J., Wong, K.-H., & Wong, P.-K. (2011). Reactivity of litter leachates from California oak woodlands in the formation of disinfection by-products. Journal of Environmental Quality, 40, 1607–1616.

    CAS  Google Scholar 

  • Cooper, R., Thoss, V., & Watson, H. (2007). Factors influencing the release of dissolved organic carbon and dissolved forms of nitrogen from a small upland headwater during autumn runoff events. Hydrological Processes, 21, 622–633.

    CAS  Google Scholar 

  • Correll, D. L., Jordan, T. E., & Weller, D. E. (2001). Effects of precipitation, air temperature, and land use on organic carbon discharges from Rhode River Watersheds. Water, Air, and Soil Pollution, 128, 139–159. https://doi.org/10.1023/a:1010337623092.

    Article  CAS  Google Scholar 

  • Dalzell, B. J., Filley, T. R., & Harbor, J. M. (2007). The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed. Geochimica et Cosmochimica Acta, 71, 1448–1462.

    CAS  Google Scholar 

  • Dawson, J., Soulsby, C., Tetzlaff, D., Hrachowitz, M., Dunn, S., & Malcolm, I. (2008). Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments. Biogeochemistry, 90, 93–113. https://doi.org/10.1007/s10533-008-9234-3.

    Article  Google Scholar 

  • Dlugoß, V., Fiener, P., Schneider, K. (2009) Layer specific geostatistical coregionalisation of soil organic carbon utilising terrain attributes and spatial patterns of soil redistribution. In: EGU General Assembly Conference Abstracts, p 3020.

  • Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z., Sommer, M., & Fiener, P. (2016). Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Science Reviews, 154, 102–122.

    CAS  Google Scholar 

  • Don, A., & Schulze, E.-D. (2008). Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types. Biogeochemistry, 91, 117–131.

    Google Scholar 

  • Forster, J. C. (1995). Soil physical analysis. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 105–106). San Diego: Academic Press Inc.

    Google Scholar 

  • Gordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J., & Nathan, R. J. (2004). Stream hydrology: An introduction for ecologists (Second ed.). London: John Wiley and Sons.

    Google Scholar 

  • Härdle, W., & Simar, L. (2007). Applied multivariate statistical analysis (2nd ed.). Berlin: Springer-Verlag.

    Google Scholar 

  • Hope, D., Billett, M. F., & Cresser, M. S. (1997a). Exports of organic carbon in two river systems in NE. Scotland. Journal of Hydrology, 193, 61–82.

    CAS  Google Scholar 

  • Hope, D., Billett, M. F., Milne, R., & Brown, T. A. W. (1997b). Export of organic carbon in Biritish Rivers. Hydrological Processes, 11, 325–344. https://doi.org/10.1002/(sici)1099-1085(19970315)11:3<325::aid-hyp476>3.0.co;2-i.

    Article  Google Scholar 

  • Huntington, T. G., Balch, W. M., Aiken, G. R., Sheffield, J., Luo, L., Roesler, C. S., & Camill, P. (2016). Climate change and dissolved organic carbon export to the Gulf of Maine. Journal of Geophysical Research – Biogeosciences, 121, 2700–2716.

    CAS  Google Scholar 

  • IFRWMO. (2010). Hiv and Shalamzar (Savojbolagh) Drainage basin management report Iran forests, range and watershed management organization. Iran: Tehran (in Persian).

    Google Scholar 

  • IPCC. (2007). Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. NewYork: Cambridge University Press.

    Google Scholar 

  • Janeau, J.-L., et al. (2014). Soil erosion, dissolved organic carbon and nutrient losses under different land use systems in a small catchment in northern Vietnam. Agricultural Water Management, 146, 314–323.

    Google Scholar 

  • Jiang, R., Hatano, R., Zhao, Y., Kuramochi, K., Hayakawa, A., Woli, K. P., & Shimizu, M. (2014). Factors controlling nitrogen and dissolved organic carbon exports across timescales in two watersheds with different land uses. Hydrological Processes, 28, 5105–5121.

    CAS  Google Scholar 

  • Killham, K., & Staddon, W. J. (2002). Bioindicators and sensors of soil health and the application of geostatistics. In R. G. Burns & R. P. Dick (Eds.), Enzymes in the environment: Activity, ecology and applications (pp. 391–405). New York: Marcel Dekker, Inc..

    Google Scholar 

  • Kirkels, F., Cammeraat, L., & Kuhn, N. (2014). The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes—A review of different concepts. Geomorphology, 226, 94–105.

    Google Scholar 

  • Kroetsch, D., & Wang, C. (2008). Particle size distribution. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 713–725). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29, 437–450.

    CAS  Google Scholar 

  • Ma, X., et al. (2018). Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau. Science of the Total Environment, 630, 314–322.

    CAS  Google Scholar 

  • Manninen, N., Soinne, H., Lemola, R., Hoikkala, L., & Turtola, E. (2018). Effects of agricultural land use on dissolved organic carbon and nitrogen in surface runoff and subsurface drainage. Science of the Total Environment, 618, 1519–1528.

    CAS  Google Scholar 

  • Mattsson, T., Kortelainen, P., Lepistö, A., & Räike, A. (2007). Organic and minerogenic acidity in Finnish rivers in relation to land use and deposition. Science of the Total Environment, 383, 183–192. https://doi.org/10.1016/j.scitotenv.2007.05.013.

    Article  CAS  Google Scholar 

  • Mattsson, T., Kortelainen, P., Laubel, A., Evans, D., Pujo-Pay, M., Räike, A., & Conan, P. (2009). Export of dissolved organic matter in relation to land use along a European climatic gradient. Science of the Total Environment, 407, 1967–1976.

    CAS  Google Scholar 

  • McCuen, R. H. (1989). Hydrologic analysis and design. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Miralles, I., Ortega, R., Sánchez-Marañón, M., Leirós, M. C., Trasar-Cepeda, C., & Gil-Sotres, F. (2007). Biochemical properties of range and forest soils in Mediterranean mountain environments. Biology and Fertility of Soils, 43, 721–729.

    Google Scholar 

  • Moody, C., Worrall, F., Evans, C., & Jones, T. (2013). The rate of loss of dissolved organic carbon (DOC) through a catchment. Journal of Hydrology, 492, 139–150.

    CAS  Google Scholar 

  • Moyer, R. P., Powell, C. E., Gordon, D. J., Long, J. S., & Bliss, C. M. (2015). Abundance, distribution, and fluxes of dissolved organic carbon (DOC) in four small sub-tropical rivers of the Tampa Bay Estuary (Florida, USA). Applied Geochemistry, 63, 550–562.

    CAS  Google Scholar 

  • Nadeu, E., Gobin, A., Fiener, P., Van Wesemael, B., & Van Oost, K. (2015). Modelling the impact of agricultural management on soil carbon stocks at the regional scale: The role of lateral fluxes. Global Change Biology, 21, 3181–3192.

    Google Scholar 

  • Nelson, R. (1982). Carbonate and gypsum. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, Part 2—chemical and microbiological properties, (2nd ed., pp. 81–197). American Society of Agronomy, Madison, WI

  • Nosrati, K., Govers, G., & Smolders, E. (2012). Dissolved organic carbon concentrations and fluxes correlate with land use and catchment characteristics in a semi-arid drainage basin of Iran. Catena, 95, 177–183. https://doi.org/10.1016/j.catena.2012.02.019.

    Article  CAS  Google Scholar 

  • Nourbakhsh, F. (2007). Decoupling of soil biological properties by deforestation. Agriculture, Ecosystems and Environment, 121, 435–438.

    Google Scholar 

  • Ogawa, A., Shibata, H., Suzuki, K., Mitchell, M. J., & Ikegami, Y. (2006). Relationship of topography to surface water chemistry with particular focus on nitrogen and organic carbon solutes within a forested watershed in Hokkaido, Japan. Hydrological Processes, 20, 251–265.

    CAS  Google Scholar 

  • Parry, L., Chapman, P., Palmer, S., Wallage, Z., Wynne, H., & Holden, J. (2015). The influence of slope and peatland vegetation type on riverine dissolved organic carbon and water colour at different scales. Science of the Total Environment, 527, 530–539.

    Google Scholar 

  • Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., & Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359.

    CAS  Google Scholar 

  • Royer, T. V., & David, M. B. (2005). Export of dissolved organic carbon from agricultural streams in Illinois, USA. Aquatic Sciences, 67, 465–471.

    CAS  Google Scholar 

  • Rutherford, P. M., McGill, W. B., Arocena, J. M., & Figueiredo, C. T. (2008). Total nitrogen. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 225–237). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Sachse, A., Henrion, R., Gelbrecht, J., & Steinberg, C. (2005). Classification of dissolved organic carbon (DOC) in river systems: Influence of catchment characteristics and autochthonous processes. Organic Geochemistry, 36, 923–935.

    CAS  Google Scholar 

  • Salazar, S., Sánchez, L. E., Alvarez, J., Valverde, A., Galindo, P., Igual, J. M., Peix, A., & Santa-Regina, I. (2011). Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37, 1123–1131.

    Google Scholar 

  • Skjemstad, J. O., & Baldock, J. A. (2008). Total and organic carbon. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 225–237). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., & Cole, J. J. (2007). Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnology and Oceanography, 52, 1208–1219.

    CAS  Google Scholar 

  • Stallard, R. F. (1998). Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles, 12, 231–257.

    CAS  Google Scholar 

  • StatSoft (2008) STATISTICA: [Data analysis software system], Version 8.0 for Windows update. StatSoft, Inc., 6.0 for Windows update edn. https://www.statsoft.com.

  • Tabatabai, M. A. (1994). Soil enzymes. In R. W. Weaver, J. S. Angle, & P. J. Bottomley (Eds.), Methods of soil analysis. Part 2, microbiological and biochemical properties (pp. 775–833). Madison: SSSA.

    Google Scholar 

  • Tajik, S., Ayoubi, S., & Nourbakhsh, F. (2012). Prediction of soil enzymes activity by digital terrain analysis: Comparing artificial neural network and multiple linear regression models. Environmental Engineering Science, 29, 798–806.

    CAS  Google Scholar 

  • Van Oost, K., et al. (2007). The impact of agricultural soil erosion on the global carbon cycle. Science, 318, 626–629.

    Google Scholar 

  • Wagner, L. E., Vidon, P., Tedesco, L. P., & Gray, M. (2008). Stream nitrate and DOC dynamics during three spring storms across land uses in glaciated landscapes of the Midwest. Journal of Hydrology, 362, 177–190.

    Google Scholar 

  • Wang, X., Cammeraat, E. L., Romeijn, P., & Kalbitz, K. (2014). Soil organic carbon redistribution by water erosion—The role of CO2 emissions for the carbon budget. PLoS One, 9.

  • Wang, Z., Hoffmann, T., Six, J., Kaplan, J. O., Govers, G., Doetterl, S., & Van Oost, K. (2017). Human-induced erosion has offset one-third of carbon emissions from land cover change. Nature Climate Change, 7, 345–349.

    CAS  Google Scholar 

  • Wilken, F., Sommer, M., Van Oost, K., Bens, O., & Fiener, P. (2017). Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes. Soil, 3, 83–94.

    CAS  Google Scholar 

  • Winn, N., Williamson, C. E., Abbitt, R., Rose, K., Renwick, W., Henry, M., & Saros, J. (2009). Modeling dissolved organic carbon in subalpine and alpine lakes with GIS and remote sensing. Landscape Ecology, 24, 807–816.

    Google Scholar 

  • Wohl, E., Hall Jr., R. O., Lininger, K. B., Sutfin, N. A., & Walters, D. M. (2017). Carbon dynamics of river corridors and the effects of human alterations. Ecological Monographs, 87, 379–409.

    Google Scholar 

  • Worrall, F., et al. (2012). The flux of DOC from the UK–predicting the role of soils, land use and net watershed losses. Journal of Hydrology, 448, 149–160.

    Google Scholar 

  • Xu, N., & Saiers, J. E. (2010). Temperature and hydrologic controls on dissolved organic matter mobilization and transport within a forest topsoil. Environmental Science & Technology, 44, 5423–5429. https://doi.org/10.1021/es1002296.

    Article  CAS  Google Scholar 

  • Yuan, B.-C., & Yue, D.-X. (2012). Soil microbial and enzymatic activities across a chronosequence of Chinese pine plantation development on the Loess Plateau of China. Pedosphere, 22, 1–12. https://doi.org/10.1016/S1002-0160(11)60186-0.

    Article  CAS  Google Scholar 

  • Zhang, S., Lu, X. X., Sun, H., & Han, J. (2011). Modeling catchment controls on organic carbon fluxes in a meso-scale mountainous river (Luodingjiang), China. Quaternary International, 244, 296–303.

    Google Scholar 

  • Zheng, Y., Waldron, S., & Flowers, H. (2018). Fluvial dissolved organic carbon composition varies spatially and seasonally in a small catchment draining a wind farm and felled forestry. Science of the Total Environment, 626, 785–794.

    CAS  Google Scholar 

  • Zieliński, P., Grabowska, M., & Jekatierynczuk-Rudczyk, E. (2016). Influence of changeable hydro-meteorological conditions on dissolved organic carbon and bacterioplankton abundance in a hypertrophic reservoir and downstream river. Ecohydrology, 9, 382–395.

    Google Scholar 

Download references

Funding

This project was funded by a grant (grant number 600.4452) from the research council of Shahid Beheshti University, Tehran, Iran. KN has been funded to work at Water and Soil Resources Research, the Institut für Geographie, Universität Augsburg, Germany, by the Georg Forster Research Fellowships program, Alexander von Humboldt Foundation. ALC was supported by strategic funding from the UKRI (UK Research and Innovation) Biotechnology and Biological Sciences Research Council (BBSRC grant BBS/E/C/000I0330; Soil to Nutrition project 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Nosrati.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosrati, K., Collins, A.L. & Fiener, P. Using catchment characteristics to model seasonality of dissolved organic carbon fluxes in semi-arid mountainous headwaters. Environ Monit Assess 192, 674 (2020). https://doi.org/10.1007/s10661-020-08626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08626-2

Keywords

Navigation