Skip to main content
Log in

Combined Molecular Dynamics Simulation and Rouse Model Analysis of Static and Dynamic Properties of Unentangled Polymer Melts with Different Chain Architectures

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Chain architecture effect on static and dynamic properties of unentangled polymers is explored by molecular dynamics simulation and Rouse mode analysis based on graph theory. For open chains, although they generally obey ideal scaling in chain dimensions, local structure exhibits nonideal behavior due to the incomplete excluded volume (EV) screening, the reduced mean square internal distance (MSID) can be well described by Wittmer’ theory for linear chains and the resulting chain swelling is architecture dependent, i.e., the more branches a bit stronger swelling. For rings, unlike open chains they are compact in term of global sizes. Due to EV effect and nonconcatenated constraints their local structure exhibits a quite different non-Gaussian behavior from open chains, i.e., reduced MSID curves do not collapse to a single master curve and fail to converge to a chain-length-independent constant, which makes the direct application of Wittmer’s theory to rings quite questionable. Deviation from ideality is further evidenced by limited applicability of Rouse prediction to mode amplitude and relaxation time at high modes as well as the non-constant and mode-dependent scaled Rouse mode amplitudes, while the latter is architecture-dependent and even molecular weight dependent for rings. The chain relaxation time is architecture-dependent, but the same scaling dependence on chain dimensions does hold for all studied architectures. Despite mode orthogonality at static state, the role of cross-correlation in orientation relaxation increases with time and the time-dependent coupling parameter rises faster for rings than open chains even at short time scales it is lower for rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Polymers with complex architecture by living anionic polymerization. Chem. Rev. 2001, 101, 3747–92.

    Article  CAS  PubMed  Google Scholar 

  2. Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Mays, J. Macromolecular architectures by living and ontrolled/living polymerizations. Prog. Polym. Sci. 2006, 31, 1068–1132.

    Article  CAS  Google Scholar 

  3. Grubbs, R. B.; Grubbs, R. H. 50th Anniversary perspective: living polymerization—emphasizing the molecule in macromolecules. Macromolecules 2017, 50, 6979–6997.

    Article  CAS  Google Scholar 

  4. Paul, W.; Smith, G. D.; Yoon, D. Y. Static and dynamic properties of a n-C100H202 melt from molecular dynamics simulations. Macromolecules 1997, 30, 7772–7780.

    Article  CAS  Google Scholar 

  5. Masubuchi, Y.; Takata, H.; Amamoto, Y.; Yamamoto, T. Relaxation of rouse modes for unentangled polymers obtained by molecular simulations. Nihon Reoroji Gakk 2018, 46, 171–178.

    Article  CAS  Google Scholar 

  6. Fatkullin, N. F.; Shakirov, T. M.; Balakirev, N. A. Why does the rouse model fairly describe the dynamic characteristics of polymer melts at molecular masses below critical mass?. Polym. Sci., Ser. A 2010, 52, 72–81.

    Article  Google Scholar 

  7. Vasile, C.; Pascu, M. Practical guide to polyethylene. Rapra Technology Limited, 2005.

  8. Flory, P. J. Statistical mechanics of chain molecules. Interscience: New York, 1969.

    Book  Google Scholar 

  9. Auhl, R.; Everaers, R.; Grest, G. S.; Kremer, K.; Plimpton, S. J. Equilibration of long chain polymer melts in computer simulations. J. Chem. Phys. 2003, 119, 12718–12728.

    Article  CAS  Google Scholar 

  10. Zhang, G. J.; Moreira, L. A.; Stuehn, T.; Daoulas, K. C.; Kremer, K. Equilibration of high molecular weight polymer melts: a hierarchical strategy. ACS Macro Lett. 2014, 3, 198–203.

    Article  CAS  PubMed  Google Scholar 

  11. Moreira, L. A.; Zhang, G. J.; Muller, F.; Stuehn, T.; Kremer, K. Direct equilibration and characterization of polymer melts for computer simulations. Macromol. Theory Simul. 2015, 24, 419–431.

    Article  CAS  Google Scholar 

  12. Svaneborg, C.; Karimi-Varzaneh, H. A.; Hojdis, N.; Fleck, F.; Everaers, R. Multiscale approach to equilibrating model polymer melts. Phys. Rev. E 2016, 94, 032502.

    Article  PubMed  Google Scholar 

  13. Sliozberg, Y. R.; Kroger, M.; Chantawansri, T. L. Fast equilibration protocol for million atom systems of highly entangled linear polyethylene chains. J. Chem. Phys. 2016, 144, 154901.

    Article  PubMed  CAS  Google Scholar 

  14. Kreer, T.; Baschnagel, J.; Müller, M.; Binder, K. Monte Carlo simulation of long chain polymer melts: crossover from Rouse to reptation dynamics. Macromolecules 2001, 34, 1105–1117.

    Article  CAS  Google Scholar 

  15. Hsu, H. P. Lattice Monte Carlo simulations of polymer melts. J. Chem. Phys. 2014, 141, 234901.

    Article  PubMed  CAS  Google Scholar 

  16. Wittmer, J. P.; Beckrich, P.; Johner, A.; Semenov, A. N.; Obukhov, S. P.; Meyer, H.; Baschnagel, J. Why polymer chains in a melt are not random walks. Europhys. Lett. 2007, 77, 56003.

    Article  CAS  Google Scholar 

  17. Wittmer, J. P.; Beckrich, P.; Meyer, H.; Cavallo, A.; Johner, A.; Baschnagel, J. Intramolecular long-range correlations in polymer melts: the segmental size distribution and its moments. Phys. Rev. E 2007, 76, 011803.

    Article  CAS  Google Scholar 

  18. Wittmer, J. P.; Meyer, H.; Baschnagel, J.; Johner, A.; Obukhov, S.; Mattioni, L.; Muller, M.; Semenov, A. N. Long range bond-bond correlations in dense polymer solutions. Phys. Rev. Lett. 2004, 93, 147801.

    Article  CAS  PubMed  Google Scholar 

  19. Tsolou, G.; Stratikis, N.; Baig, C.; Stephanou, P. S.; Mavrantzas, V. G. Melt structure and dynamics of unentangled polyethylene rings rouse theory, atomistic molecular dynamics simulation, and comparison with the linear analogues. Macromolecules 2010, 43, 0692–10713.

    Article  CAS  Google Scholar 

  20. Doi, M., Edwards, S. F. The theory of polymer dynamics. Oxford University Press, 1988.

  21. Gurtovenko, A. A.; Blumen, A. Generalized gaussian structures: models for polymer systems with complex topologies. Adv. Polym. Sci. 2005, 182, 171–282.

    Article  CAS  Google Scholar 

  22. Dolgushev, M.; Blumen, A. Dynamics of semiflexible treelike polymeric networks. J. Chem. Phys. 2009, 131, 044905.

    Article  PubMed  CAS  Google Scholar 

  23. Dolgushev, M.; Berezovska, G.; Blumen, A. Cospectral polymers: differentiation via semiflexibility. J. Chem. Phys. 2010, 133, 154905.

    Article  PubMed  CAS  Google Scholar 

  24. Dolgushev, M.; Berezovska, G.; Blumen, A. Branched semiflexible polymers: theoretical and simulation aspects. Macromol. Theory Simul. 2011, 20, 621–644.

    Article  CAS  Google Scholar 

  25. Paul, W.; Smith, G. D.; Yoon, D. Y.; Farago, B.; Rathgeber, S.; Zirkel, A.; Willner, L.; Richter, D. Chain motion in an unentangled polyethylene melt: a critical test of the rouse model by molecular dynamics simulations and neutron spin echo spectroscopy. Phys. Rev. Lett. 1998, 80, 2346–2349.

    Article  CAS  Google Scholar 

  26. Kalathi, J. T.; Kumar, S. K.; Rubinstein, M.; Grest, G. S. Rouse mode analysis of chain relaxation in homopolymer melts. Macromolecules 2014, 47, 6925–6931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Colmenero, J. A generalized rouse incoherent scattering function for chain dynamics of unentangled polymers in dynamically asymmetric blends. Macromolecules 2013, 46, 5363–5370.

    Article  CAS  Google Scholar 

  28. Smith, G. D.; Paul, W.; Monkenbusch, M.; Richter, D. On the non-gaussianity of chain motion in unentangled polymer melts. J. Chem. Phys. 2001, 114, 4285–4288.

    Article  CAS  Google Scholar 

  29. Graf, R.; Heuer, A.; Spiess, H. W. Chain-order effects in polymer melts probed by 1H double-quantum NMR spectroscopy. Phys. Rev. Lett. 1998, 80, 5738–5741.

    Article  CAS  Google Scholar 

  30. Ylitalo, C. M.; Kornfield, J. A.; Fuller, G. G.; Pearson, D. S. Molecular-weight dependence of component dynamics in bidisperse melt rheology. Macromolecules 1991, 24, 749–758.

    Article  CAS  Google Scholar 

  31. Likhtman, A. E.; Sukumaran, S. K.; Ramirez, J. Linear viscoelasticity from molecular dynamics simulation of entangled polymers. Macromolecules 2007, 40, 6748–6757.

    Article  CAS  Google Scholar 

  32. Cao, J.; Likhtman, A. E. Time-dependent orientation coupling in equilibrium polymer melts. Phys. Rev. Lett. 2010, 104, 207801.

    Article  PubMed  CAS  Google Scholar 

  33. Masubuchi, Y.; Pandey, A.; Amamoto, Y.; Uneyama, T. Orientational cross correlations between entangled branch polymers in primitive chain network simulations. J. Chem. Phys. 2017, 147, 184903.

    Article  PubMed  CAS  Google Scholar 

  34. Qi, Y.; Dolgushev, M.; Zhang, Z. Dynamics of semiflexible recursive small-world polymer networks. Sci. Rep. 2014, 4, 7576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, Y. Z.; Qiu, F.; Zhang, H. D.; Yang, Y. L. The rouse dynamic properties of dendritic chains: a graph theoretical method. Macromolecules 2017, 50, 4008–4022.

    Google Scholar 

  36. Hsu, H. P.; Kremer, K. Detailed analysis of rouse mode and dynamic scattering function of highly entangled polymer melts in equilibrium. Eur. Phys. J. Spec. Top. 2017, 226, 693–703.

    Article  Google Scholar 

  37. Likhtman, A. E.; Ponmurugan, M. Microscopic definition of polymer entanglements. Macromolecules 2014, 47, 1470–1481.

    Article  CAS  Google Scholar 

  38. Downey, J. P. Static and dynamic scaling properties of single, self-avoiding polymer chains in two dimensions via the bond fluctuation method of Monte Carlo simulation. Macromolecules 1994, 27, 2929–2932.

    Article  CAS  Google Scholar 

  39. Panja, D.; Barkema, G. T. Rouse modes of self-avoiding flexible polymers. J. Chem. Phys. 2009, 131, 154903.

    Article  PubMed  CAS  Google Scholar 

  40. Rauscher, P. M.; Rowan, S. J.; de Pablo, J. J. Topological effects in isolated poly[n]catenanes: molecular dynamics simulations and rouse mode analysis. ACS Macro Lett. 2018, 7, 938–943.

    Article  CAS  PubMed  Google Scholar 

  41. Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086.

    Article  CAS  Google Scholar 

  42. Kopf, A.; Dünweg, B.; Paul, W. Dynamics of polymer “isotope” mixtures: molecular dynamics simulation and rouse model analysis. J. Chem. Phys. 1997, 107, 6945–6955.

    Article  CAS  Google Scholar 

  43. Khabaz, F.; Khare, R. Effect of chain architecture on the size, shape, and intrinsic viscosity of chains in polymer solutions: a molecular simulation study. J. Chem. Phys. 2014, 141, 214904.

    Article  PubMed  CAS  Google Scholar 

  44. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1.

    Article  CAS  Google Scholar 

  45. Everaers, R.; Sukumaran, S. K.; Grest, G. S.; Svaneborg, C.; Sivasubramanian, A.; Kremer, K. Rheology and microscopic topology of entangled polymeric liquids. Science 2004, 303, 823–826.

    Article  CAS  PubMed  Google Scholar 

  46. Hou, J. X.; Svaneborg, C.; Everaers, R.; Grest, G. S. Stress relaxation in entangled polymer melts. Phys. Rev. Lett. 2010, 105, 068301.

    Article  PubMed  CAS  Google Scholar 

  47. Xu, X.; Chen, J.; An, L. Simulation studies on architecture dependence of unentangled polymer melts. J. Chem. Phys. 2015, 142, 074903.

    Article  PubMed  CAS  Google Scholar 

  48. West, D. B. Introduction to graph theory. Prentice hall Upper Saddle River, 2001.

  49. Lang, M. Ring conformations in bidisperse blends of ring polymers. Macromolecules 2013, 46, 1158–1166.

    Article  CAS  Google Scholar 

  50. Ramirez, J.; Sukumaran, S. K.; Vorselaars, B.; Likhtman, A. E. Efficient on the fly calculation of time correlation functions in computer simulations. J. Chem. Phys. 2010, 133, 154103.

    Article  PubMed  CAS  Google Scholar 

  51. Arkin, H.; Janke, W. Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage. J. Chem. Phys. 2013, 138, 054904.

    Article  PubMed  CAS  Google Scholar 

  52. Blavatska, V.; Janke, W. Shape anisotropy of polymers in disordered environment. J. Chem. Phys. 2010, 133, 184903.

    Article  PubMed  CAS  Google Scholar 

  53. Brereton, M. G.; Vilgis, T. A. The statistical mechanics of a melt of polymer rings. J. Phys. A:Math. Gen. 1995, 28, 1149–1167.

    Article  CAS  Google Scholar 

  54. Halverson, J. D.; Lee, W. B.; Grest, G. S.; Grosberg, A. Y.; Kremer, K. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. J. Chem. Phys. 2011, 134, 204904.

    Article  PubMed  Google Scholar 

  55. Brown, S.; Szamel, G. Computer simulation study of the structure and dynamics of ring polymers. J. Chem. Phys. 1998, 109, 6184–6192.

    Article  CAS  Google Scholar 

  56. Obukhov, S.; Johner, A.; Baschnagel, J.; Meyer, H.; Wittmer, J. P. Melt of polymer rings: the decorated loop model. Europhys. Lett. 2014, 105, 48005.

    Article  CAS  Google Scholar 

  57. Hsu, H. P.; Kremer, K. Static and dynamic properties of large polymer melts in equilibrium. J. Chem. Phys. 2016, 144, 154907.

    Article  PubMed  CAS  Google Scholar 

  58. Brodeck, M.; Alvarez, F.; Arbe, A.; Juranyi, F.; Unruh, T.; Holderer, O.; Colmenero, J.; Richter, D. Study of the dynamics of poly(ethylene oxide) by combining molecular dynamic simulations and neutron scattering experiments. J. Chem. Phys. 2009, 130, 094908.

    Article  CAS  PubMed  Google Scholar 

  59. Hu, Y. F.; Xue, K. L.; Yu, X. C.; Hou, J. X. The relaxation times of unentangled polymer melts with different molecular architectures. J. Polym. Res. 2019, 26, 192.

    Article  CAS  Google Scholar 

  60. Takahashi, K. Z.; Yamato, N.; Yasuoka, K.; Masubuchi, Y. Critical test of bead-spring model to resolve the scaling laws of polymer melts: a molecular dynamics study. Mol. Simul. 0017, 43, 1196–1201.

    Article  CAS  Google Scholar 

  61. Takahashi, K. Z.; Nishimura, R.; Yasuoka, K.; Masubuchi, Y. Molecular dynamics simulations for resolving scaling laws of polyethylene melts. Polymers 2017, 9, 24.

    Article  PubMed Central  CAS  Google Scholar 

  62. Tsalikis, D. G.; Alatas, P. V.; Peristeras, L. D.; Mavrantzas, V. G. Scaling laws for the conformation and viscosity of ring polymers in the crossover region around Me from detailed molecular dynamics simulations. ACS Macro Lett. 2018, 7, 916–920.

    Article  CAS  PubMed  Google Scholar 

  63. Kolinski, A.; Skolnick, J.; Yaris, R. Does reptation describe the dynamics of entangled, finite length polymer systems? A model simulation. J. Chem. Phys. 1987, 86, 1567–1585.

    Article  CAS  Google Scholar 

  64. Svaneborg, C.; Everaers, R. Characteristic time and length scales in melts of kremer-grest bead-spring polymers with wormlike bending stiffness. Macromolecules 2020, 53, 1917–1941.

    Article  CAS  Google Scholar 

  65. Doxastakis, M.; Theodorou, D. N.; Fytas, G.; Kremer, F.; Faller, R.; Muller-Plathe, F.; Hadjichristidis, N. Chain and local dynamics of polyisoprene as probed by experiments and computer simulations. J. Chem. Phys. 2003, 119, 6883–6894.

    Article  CAS  Google Scholar 

  66. Farago, J.; Semenov, A. N.; Meyer, H.; Wittmer, J. P.; Johner, A.; Baschnagel, J. Mode-coupling approach to polymer diffusion in an unentangled melt. I. The effect of density fluctuations. Phys. Rev. E 2012, 85, 051806.

    Article  CAS  Google Scholar 

  67. Farago, J.; Meyer, H.; Baschnagel, J.; Semenov, A. N. Mode-coupling approach to polymer diffusion in an unentangled melt. II. The effect of viscoelastic hydrodynamic interactions. Phys. Rev. E 2012, 85, 051807.

    Article  CAS  Google Scholar 

  68. Farago, J.; Meyer, H.; Semenov, A. N. Anomalous diffusion of a polymer chain in an unentangled melt. Phys. Rev. Lett. 2011, 107, 178301.

    Article  CAS  PubMed  Google Scholar 

  69. Ramirez, J.; Sukumaran, S. K.; Likhtman, A. E. Significance of cross correlations in the stress relaxation of polymer melts. J. Chem. Phys. 2007, 126, 244904.

    Article  PubMed  CAS  Google Scholar 

  70. Masubuchi, Y.; Sukumaran, S. K. Cross-correlation contributions to orientational relaxations in primitive chain network simulations. Nihon Reoroji Gakkaishi 2013, 41, 1–6.

    Article  CAS  Google Scholar 

  71. Masubuchi, Y.; Pandey, A.; Amamoto, Y. Inter-chain cross-correlation in multi-chain slip-link simulations without force balance at entanglements. Nihon Reoroji Gakk 2017, 45, 175–180.

    Article  CAS  Google Scholar 

  72. Masubuchi, Y.; Amamoto, Y. Effect of osmotic force on orientational cross-correlation in primitive chain network simulation. Nihon Reoroji Gakk 2016, 44, 219–222.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21790343, 21574142, and 21174154) and the National Key Research and Development Program of China (No. 2016YFB1100800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Xia Guo.

Electronic Supplementary Information

10118_2020_2489_MOESM1_ESM.pdf

Combined Molecular Dynamics Simulation and Rouse Model Analysis of Static and Dynamic Properties of Unentangled Polymer Melts with Different Chain Architectures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, P., Feng, LK. & Guo, HX. Combined Molecular Dynamics Simulation and Rouse Model Analysis of Static and Dynamic Properties of Unentangled Polymer Melts with Different Chain Architectures. Chin J Polym Sci 39, 512–524 (2021). https://doi.org/10.1007/s10118-020-2489-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2489-4

Keywords

Navigation