Skip to main content

Advertisement

Log in

Enhancing the performance of supercapacitor electrode from chemical activation of carbon nanofibers derived Areca catechu husk via one-stage integrated pyrolysis

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

A carbon nanofiber was produced from the Areca catechu husk as a supercapacitor electrode, utilizing a chemical activation of potassium hydroxide (KOH) at different concentrations. One-stage integrated pyrolysis both carbonization and physical activation were employed for directly converting biomass to activated carbon nanofiber. The morphology structure, specific surface area, pore structure characteristic, crystallinity, and surface compound were characterized to evaluate the influence on electrochemical performance. The electrochemical performance of the supercapacitor was measured using cyclic voltammetry (CV) through a symmetrical system in 1 M H2SO4. The results show that the KOH-assisted or absence activation converts activated carbon from aggregate into a unique structure of nanofiber. The optimized carbon nanofiber showed the large specific surface area of 838.64 m2 g−1 with the total pore volume of 0.448 cm3 g−1, for enhancing electrochemical performance. Beneficial form its unique structural advantages, the optimized carbon nanofiber exhibits high electrochemical performance, including a specific capacitance of 181.96 F g−1 and maximum energy density of 25.27 Wh kg−1 for the power density of 91.07 W kg−1. This study examines a facile conventional route for producing carbon nanofiber from biomass Areca catechu husk in economical and efficient for electrode supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zakeri B, Syri S (2015) Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev 42:569–596. https://doi.org/10.1016/j.rser.2014.10.011

    Article  Google Scholar 

  2. Sovacool BK, Griffiths S (2019) The cultural barriers to a low-carbon future: a review of six mobility and energy transitions across 28 countries. Renew Sustain Energy Rev 119:109569. https://doi.org/10.1016/j.rser.2019.109569

    Article  Google Scholar 

  3. Koohi-Fayegh S, Rosen MA (2020) A review of energy storage types, applications and recent developments. J Energy Storage 27:101047. https://doi.org/10.1016/j.est.2019.101047

    Article  Google Scholar 

  4. Miller EE, Hua Y, Tezel FH (2018) Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors. J Energy Storage 20:30–40. https://doi.org/10.1016/j.est.2018.08.009

    Article  Google Scholar 

  5. Faraji S, Nasir F (2015) The development supercapacitor from activated carbon by electroless plating—a review. Renew Sustain Energy Rev 42:823–834. https://doi.org/10.1016/j.rser.2014.10.068

    Article  CAS  Google Scholar 

  6. Tie D, Huang S, Wang J, Ma J, Zhang J, Zhao Y (2019) Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater 21:22–40. https://doi.org/10.1016/j.ensm.2018.12.018

    Article  Google Scholar 

  7. Karthick R, Chen F (2019) Free-standing graphene paper for energy application: progress and future scenarios. Carbon 150:292–310. https://doi.org/10.1016/j.carbon.2019.05.017

    Article  CAS  Google Scholar 

  8. Ghosh S, Santhosh R, Jeniffer S, Raghavan V, Jacob G, Nanaji K, Kollu P, Jeong SK, Grace AN (2019) Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci Rep 9:16315. https://doi.org/10.1038/s41598-019-52006-x

    Article  CAS  Google Scholar 

  9. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903. https://doi.org/10.1016/j.jpowsour.2010.06.036

    Article  CAS  Google Scholar 

  10. Iqbal MZ, Zakar S, Haider SS (2020) Role of aqueous electrolytes on the performance of electrochemical energy storage device. J Electroanal Chem 858:113793. https://doi.org/10.1016/j.jelechem.2019.113793

    Article  CAS  Google Scholar 

  11. Ji H, Zhao X, Qiao Z, Jung J, Zhu Y, Lu Y, Zhang LL, Macdonald AH, Ruoff RS (2014) Capacitance of carbon-based electrical double-layer capacitors. Nat Commun 5:1–7. https://doi.org/10.1038/ncomms4317

    Article  CAS  Google Scholar 

  12. Gopiraman M, Deng D, Kim B, Chung I, Kim IS (2017) Three-dimensional cheese-like carbon nanoarchitecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitors. Appl Surf Sci 409:52–59. https://doi.org/10.1016/j.apsusc.2017.02.209

    Article  CAS  Google Scholar 

  13. Yahya MA, Al-qodah Z, Ngah CWZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sustain Energy Rev 46:218–235. https://doi.org/10.1016/j.rser.2015.02.051

    Article  CAS  Google Scholar 

  14. Azwar E, Adibah W, Mahari W, Huang J (2018) Transformation of biomass into carbon nanofiber for supercapacitor application: a review. Int J Hydrogen Energy 43:20811–20821. https://doi.org/10.1016/j.ijhydene.2018.09.111

    Article  CAS  Google Scholar 

  15. Chen X, Timpe O, Hamid SBA, Schlogl R, Su DS (2008) Direct synthesis of carbon nanofibers on modified biomass-derived activated carbon. Carbon 47:313–347. https://doi.org/10.1016/j.carbon.2008.11.001

    Article  CAS  Google Scholar 

  16. Zhao X, Chen H, Kong F, Zhang Y, Wang S, Liu S, Lucia LA, Fatehi P, Pang H (2019) Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chem Eng J 364:226–243. https://doi.org/10.1016/j.cej.2019.01.159

    Article  CAS  Google Scholar 

  17. Wang L, Yang G, Peng S, Wang J, Yan W, Ramakrishna S (2019) One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning. Energy Storage Mater 25:443–476. https://doi.org/10.1016/j.ensm.2019.09.036

    Article  Google Scholar 

  18. Kumar M, Hietala M, Oksman K (2019) Lignin-Based Electrospun Carbon Nanofibers. Front Mater 6:1–6. https://doi.org/10.3389/fmats.2019.00062

    Article  Google Scholar 

  19. Hassan MF, Sabri MA, Fazal H, Shahzad N, Hussain M (2019) Recent trends in activated carbon fibers production from various precursors and applications—a comparative review. J Anal Appl Pyrolysis 145:104715. https://doi.org/10.1016/j.jaap.2019.104715

    Article  CAS  Google Scholar 

  20. Su X, Li S, Jiang S, Peng Z, Guan X, Zheng X (2018) Superior capacitive behavior of porous activated carbon tubes derived from biomass waste-cotonier strobili fibers. Adv Powder Technol 29:2097–2107. https://doi.org/10.1016/j.apt.2018.05.018

    Article  CAS  Google Scholar 

  21. Danish M, Ahmad T (2018) A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sustain Energy Rev 87:1–21. https://doi.org/10.1016/j.rser.2018.02.003

    Article  CAS  Google Scholar 

  22. Chang F, Yen S, Wang S (2018) Developing lignosulfonate-based activated carbon. Fibers materials 11:1877. https://doi.org/10.3390/ma11101877

    Article  CAS  Google Scholar 

  23. Wei X, Wei J, Li Y, Zou H (2019) Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. J Power Sources 414:13–23. https://doi.org/10.1016/j.jpowsour.2018.12.064

    Article  CAS  Google Scholar 

  24. Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri NH (2013) Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour Technol 132:254–261. https://doi.org/10.1016/j.biortech.2013.01.044

    Article  CAS  Google Scholar 

  25. Song X, Ma X, Li Y, Ding L, Jiang R (2019) Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Appl Surf Sci 487:189–197. https://doi.org/10.1016/j.apsusc.2019.04.277

    Article  CAS  Google Scholar 

  26. Faisal MSS, Abedin F, Asmatulu R (2020) Activated carbons of pistachio and acorn shells for supercapacitor electrodes with—TEABF4/PC solutions as electrolytes. Carbon Lett. https://doi.org/10.1007/s42823-020-00120-6

    Article  Google Scholar 

  27. Kumagai S, Tashima D (2015) Electrochemical performance of activated carbons prepared from rice husk in different types of non-aqueous electrolytes. Biomass Bioenerg 83:216–223. https://doi.org/10.1016/j.biombioe.2015.09.021

    Article  CAS  Google Scholar 

  28. Li Y, Wang X, Cao M (2018) Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors. J CO2 Util 27:204–216. https://doi.org/10.1016/j.jcou.2018.07.019

    Article  CAS  Google Scholar 

  29. Xue M, Lu W, Chen C, Tan Y, Li B, Zhang C (2019) Optimized synthesis of banana peel derived porous carbon and its application in lithium sulfur batteries. Mater Res Bull 112:269–280. https://doi.org/10.1016/j.materresbull.2018.12.035

    Article  CAS  Google Scholar 

  30. Yu F, Ye Z, Chen W, Wang Q, Wang H, Zhang H, Peng C (2019) Plane tree bark-derived mesopore-dominant hierarchical carbon for high-voltage supercapacitors. Appl Surf Sci 507:145190. https://doi.org/10.1016/j.apsusc.2019.145190

    Article  CAS  Google Scholar 

  31. Lu Q, Zhou S, Li B, Wei H, Zhang D, Hu J, Zhang J, Liu Q (2020) Mesopore-rich carbon flakes derived from lotus leaves and it’s ultrahigh performance for supercapacitors. Electrochim Acta 333:135481. https://doi.org/10.1016/j.electacta.2019.135481

    Article  CAS  Google Scholar 

  32. Jiang W, Li L, Pan J, Senthil RA, Jin X, Cai J, Wang J, Liu X (2019) Hollow-tubular porous carbon derived from cotton with high productivity for enhanced performance supercapacitor. J Power Sources 438:226936. https://doi.org/10.1016/j.jpowsour.2019.226936

    Article  CAS  Google Scholar 

  33. Zhang R, Gu X, Liu Y, Hua D, Shao M, Gu Z, Wu J, Zheng B, Zhang W, Li S, Huo F, Huang W (2020) Hydrophilic nano-porous carbon derived from egg whites for highly efficient capacitive deionization. Appl Surf Sci 512:145740. https://doi.org/10.1016/j.apsusc.2020.145740

    Article  CAS  Google Scholar 

  34. Virtanen J, Pammo A, Keskinen J, Sarlin E, Tuukkanen S (2017) Pyrolysed cellulose nanofibrils and dandelion pappus in supercapacitor application. Cellulose 24:3387–3397. https://doi.org/10.1007/s10570-017-1332-8

    Article  CAS  Google Scholar 

  35. Shen F, Su J, Zhu L, Qi X, Zhang X (2017) Comprehensive utilization of dairy manure to produce glucose and hierarchical porous carbon for supercapacitors. Cellulose 24:2571–2579. https://doi.org/10.1007/s10570-017-1267-0

    Article  CAS  Google Scholar 

  36. Yang S, Cheng Y, Xiao X, Pang H (2020) Development and application of carbon fiber in batteries. Chem Eng J 384:123294. https://doi.org/10.1016/j.cej.2019.123294

    Article  CAS  Google Scholar 

  37. Abioye AM, Abi FN (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew Sustain Energy Rev 52:1282–1293. https://doi.org/10.1016/j.rser.2015.07.129

    Article  CAS  Google Scholar 

  38. Gonzalez-Garcia P (2018) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev 82:1393–1414. https://doi.org/10.1016/j.rser.2017.04.117

    Article  CAS  Google Scholar 

  39. Ma X, Ding C, Li D, Wu M, Yu Y (2018) A facile approach to prepare biomass-derived activated carbon hollow fibers from wood waste as high-performance supercapacitor electrodes. Cellulose 25:4743–4755. https://doi.org/10.1007/s10570-018-1903-3

    Article  CAS  Google Scholar 

  40. Tayeb P, Tayeb AH (2019) Nanocellulose applications in sustainable electrochemical and piezoelectric systems: a review. Carbohydr Polym 224:115149. https://doi.org/10.1016/j.carbpol.2019.115149

    Article  CAS  Google Scholar 

  41. Wu F, Gao J, Zhai X, Xie M, Sun Y, Kang H, Tian Q (2019) Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors. Carbon 147:242–251. https://doi.org/10.1016/j.carbon.2019.02.072

    Article  CAS  Google Scholar 

  42. Fic K, Platek A, Piwek J, Frackowiak E (2018) Sustainable materials for electrochemical capacitors. Mater Today 21:437–454. https://doi.org/10.1016/j.mattod.2018.03.005

    Article  CAS  Google Scholar 

  43. Wang Y, Qu Q, Gao S, Tang G, Liu K, He S, Huang C (2019) Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155:706–726. https://doi.org/10.1016/j.carbon.2019.09.018

    Article  CAS  Google Scholar 

  44. Chandra CJ, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166. https://doi.org/10.1016/j.carbpol.2016.01.015

    Article  CAS  Google Scholar 

  45. Kabir SMM, Dhar AK, Bhattacharjee M (2019) The use of natural Areca catechu dyes for silk and nylon and its halochromic effect. J Text Inst. https://doi.org/10.1080/00405000.2019.1674542

    Article  Google Scholar 

  46. Binoj JS, Raj RE, Daniel BSS, Saravanakumar SS (2016) Optimization of short indian areca fruit husk fiber (Areca Catechu L.) reinforced polymer composites for maximizing the mechanical property. Int J Polym Anal Charact 5341:112–122. https://doi.org/10.1080/1023666X.2016.1110765

    Article  CAS  Google Scholar 

  47. Devaki E, Sangeetha DK (2017) Extraction and characterisation of natural cellulosic husk fibre areca catechul. Int J Res Appl Sci Eng Technol 5:1468–1472. https://doi.org/10.22214/ijraset.2017.11212

    Article  Google Scholar 

  48. Taer E, Apriwandi HR, Taslim R, Awitdrus AA, Agustino II (2019) The synthesis of bridging carbon particles with carbon nanotubes from areca catechu husk waste as supercapacitor electrodes. Int J Electrochem Sci 14:9436–9448. https://doi.org/10.20964/2019.10.34

    Article  CAS  Google Scholar 

  49. Taer E, Sugianto SMA, Taslim R, Iwantono DD, Deraman M (2014) Eggs shell membrane as natural separator for supercapacitor applications. Adv Mater Res 896:66–69. https://doi.org/10.4028/www.scientific.net/AMR.896.66

    Article  CAS  Google Scholar 

  50. Huang G, Liu Y, Wu X, Cai J (2019) Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. New Carbon Mater 34:247–257. https://doi.org/10.1016/S1872-5805(19)60014-4

    Article  Google Scholar 

  51. Lin G, Ma R, Zhou Y, Liu Q, Dong X, Wang J (2017) KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochim Acta 261:49–57. https://doi.org/10.1016/j.electacta.2017.12.107

    Article  CAS  Google Scholar 

  52. Zhao C, Huang Y, Zhao C, Shao X, Zhu Z (2018) Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors. Electrochim Acta 291:287–296. https://doi.org/10.1016/j.electacta.2018.09.136

    Article  CAS  Google Scholar 

  53. Zhao N, Zhang P, Luo D, Xiao W, Deng L (2019) Direct production of porous carbon nanosheets / particle composites from wasted litchi shell for supercapacitors. J Alloys Compd 788:677–684. https://doi.org/10.1016/j.jallcom.2019.02.304

    Article  CAS  Google Scholar 

  54. Yang X, Kong L, Cao M, Liu X, Li X (2020) Porous nanosheets-based carbon aerogel derived from sustainable rattan for supercapacitors application. Ind Crops Prod 145:112100. https://doi.org/10.1016/j.indcrop.2020.112100

    Article  CAS  Google Scholar 

  55. Espinoza-acosta JL, Torres-chávez PI, Olmedo-martínez JL, Vega-rios A, Flores-gallardo S, Zaragoza-contreras EA (2018) Lignin in storage and renewable energy applications: a review. J Energy Chem 27:1422–1438. https://doi.org/10.1016/j.jechem.2018.02.015

    Article  Google Scholar 

  56. Ayinla RT, Dennis JO, Zaid HM, Sanusi YK, Usman F, Adebayo LL (2019) A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. J Clean Prod 229:1427–1442. https://doi.org/10.1016/j.jclepro.2019.04.116

    Article  CAS  Google Scholar 

  57. Qiu Z, Wang Y, Bi X, Zhou T, Zhou J, Zhao J, Miao Z, Yi W, Fu P, Zhuo S (2018) Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J Power Sources 376:82–90. https://doi.org/10.1016/j.jpowsour.2017.11.077

    Article  CAS  Google Scholar 

  58. Murali G, Harish S, Ponnusamy S, Ragupathi J, Annal H (2019) Hierarchically porous structured carbon derived from peanut shell as an enhanced high rate anode for lithium ion batteries. Appl Surf Sci 492:464–472. https://doi.org/10.1016/j.apsusc.2019.06.142

    Article  CAS  Google Scholar 

  59. Lin Y, Chen Z, Yu C, Zhong W (2020) Facile synthesis of high nitrogen-doped content, mesopore-dominated biomass-derived hierarchical porous graphitic carbon for high performance supercapacitors. Electrochim Acta 334:135615. https://doi.org/10.1016/j.electacta.2020.135615

    Article  CAS  Google Scholar 

  60. Pallarés J, González-cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenerg 115:64–73. https://doi.org/10.1016/j.biombioe.2018.04.015

    Article  CAS  Google Scholar 

  61. Serafin J, Baca M, Biegun M, Mijowska E, Kale RJ (2019) Direct conversion of biomass to nanoporous activated biocarbons for high CO2 adsorption and supercapacitor applications. Appl Surf Sci 497:143722. https://doi.org/10.1016/j.apsusc.2019.143722

    Article  CAS  Google Scholar 

  62. Kumar K, Saxena R, Kothari R, Suri D, Kaushik K, Bohra J (1997) Correlation between adsorption and X-ray diffraction studies on viscose rayon based activated carbon cloth. Carbon 35:1842–1844. https://doi.org/10.1016/S0008-6223(97)87258-2

    Article  CAS  Google Scholar 

  63. Inal IIG, Aktas Z (2020) Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Appl Surf Sci 514:145895. https://doi.org/10.1016/j.apsusc.2020.145895

    Article  CAS  Google Scholar 

  64. Promdee K, Chanvidhwatanakit J, Satitkune S (2017) Characterization of carbon materials and di ff erences from activated carbon particle (ACP) and coal briquettes product (CBP) derived from coconut shell via rotary kiln. Renew Sustain Energy Rev 75:1175–1186. https://doi.org/10.1016/j.rser.2016.11.099

    Article  CAS  Google Scholar 

  65. Fasakin O, Dangbegnon JK, Momodu DY, Madito MJ, Oyedotun KO, Eleruja MA, Manyala N (2018) Synthesis and characterization of porous carbon derived from activated banana peels with hierarchical porosity for improved electrochemical performance. Electrochim Acta 262:187–196. https://doi.org/10.1016/j.electacta.2018.01.028

    Article  CAS  Google Scholar 

  66. Yan R, Wang K, Tian X, Li X, Yang T, Xu X, He Y, Lei S, Song Y (2019) Heteroatoms in situ-doped hierarchical porous hollow-activated carbons for high-performance supercapacitor. Carbon Lett 30:331–344. https://doi.org/10.1007/s42823-019-00102-3

    Article  Google Scholar 

  67. Zhang Z, He J, Tang X, Wang Y, Yang B, Wang K, Zhang D (2019) Supercapacitors based on a nitrogen doped hierarchical porous carbon fabricated by self-activation of biomass: excellent rate capability and cycle stability. Carbon Lett 29:585–594. https://doi.org/10.1007/s42823-019-00057-5

    Article  Google Scholar 

  68. Guo J, Guo H, Zhang L, Yang B, Cui J (2018) Hierarchically porous carbon as a high-rate and long-life electrode material for high-performance supercapacitors. ChemElectroChem 5:770–777. https://doi.org/10.1002/celc.201701286

    Article  CAS  Google Scholar 

  69. Ahmed S, Rafat M, Ahmed A (2018) Nitrogen doped activated carbon derived from orange peel for supercapacitor application. Adv Nat Sci 9:035008. https://doi.org/10.1088/2043-6254/aad5d4

    Article  CAS  Google Scholar 

  70. Yang X, Li C, Chen Y (2017) Hierarchical porous carbon with ultrahigh surface area from corn leaf for high-performance supercapacitors application. J Physic D 50:055501. https://doi.org/10.1088/1361-6463/50/5/055501

    Article  CAS  Google Scholar 

  71. Chen D, Li L, Xi Y, Li J, Lu M, Cao J, Han W (2018) Self-assembly of biomass microfibers into 3D layer-stacking hierarchical porous carbon for high performance supercapacitors. Electrochim Acta 286:264–270. https://doi.org/10.1016/j.electacta.2018.08.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by DRPM Kemenristek-Dikti through second year Project of PD (396/UN.19.5.1.3/PT.01.03/2020) with the title “High-density micro-and nano carbon fiber made from biomass based materials for supercapacitor electrodes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erman Taer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taer, E., Febriyanti, F., Mustika, W.S. et al. Enhancing the performance of supercapacitor electrode from chemical activation of carbon nanofibers derived Areca catechu husk via one-stage integrated pyrolysis. Carbon Lett. 31, 601–612 (2021). https://doi.org/10.1007/s42823-020-00191-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00191-5

Keywords

Navigation