Skip to main content

Advertisement

Log in

Genetic Diversity Assessment of a Chinese Medicinal Endemic Species, Aspidopterys obcordata var. obcordata, by Combined Molecular Marker Methods (ISSR & SRAP)

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Aspidopterys obcordata var. obcordata, a medicinal plant endemic to China, is a narrowly distributed species and wild resources are extremely limited. To evaluate the genetic variability and degree of genetic divergence of A. obcordata var. obcordata, and to make rational scientific decisions on its harvest and germplasm conservation, we collected 122 samples from across nearly all of its distribution area and studied genetic diversity using inter-simple sequence repeats (ISSRs), sequence-related amplified polymorphisms (SRAPs), and a method combining the two techniques. The results revealed the high genetic diversity of A. obcordata var. obcordata, mainly due to its intra-population diversity, and the top two populations with the highest levels of intra-population diversity were ML and DH, individuals of which can serve as excellent germplasm candidates during the processing of germplasm screening and conservation. In general, the combining method was prior to the ISSR analyses and SRAP analyses results, except for a slight difference in the genetic structure of individual populations. Therefore, we suggest that a combination analysis of the two marker methods is ideal for evaluating the genetic diversity and genetic relationships of A. obcordata var. obcordata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ISSR:

Inter-simple sequence repeat

SRAPs:

Sequence-related amplified polymorphisms

UPGMA:

Unweighted pair group method with arithmetic means

AMOVA:

Analyses of molecular variance

PCA:

Principal component analyses

References

  • Bracci T, Busconi M, Fogher C, Sebastiani L (2011) Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep. 30:449–462

    Article  CAS  Google Scholar 

  • Culley TM, Wolfe AD (2001) Population genetic structure of the cleistogamous plant species Viola pubescens Aiton (Violaceae), as indicated by allozyme and ISSR molecular markers. Heredity 86:545–556

    Article  CAS  Google Scholar 

  • Das A, Kesari V, Satyanarayana VM, Parida A, Rangan L (2011) Genetic relationship of Curcuma Species from Northeast India using PCR-based markers. Mol Biotechnol 49:65–76

    Article  CAS  Google Scholar 

  • Food and drug administration of Yunnan province (2005) The standard of traditional Chinese medicine of Yunnan Province-Dai medicine. Yunnan science and Technology Press, Yunnan

    Google Scholar 

  • Frascaroli E, Schrag TA, Melchinger AE (2013) Genetic diversity analysis of elite European maize (Zea mays L.)inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor Appl Genet 126:133–141

    Article  Google Scholar 

  • Guowen X, Xiaoyu P, Yanling Z, Jinxing Z (2007) Genetic diversity of endangered plant Monimopetalum Chinense in China detected by ISSR analysis. Scientia silvae sinicae 43(8):48–52

    Google Scholar 

  • Kaya HB, Cetin O, Kaya H, Sahin M, Sefer F, Kahraman A, Tanyolac B (2013) SNP discovery by Illumina-based transcriptome sequencing of the olive and the genetic characterization of Turkish olive genotypes revealed by AFLP SSR and SNP markers. PLoS ONE 8:e73674

    Article  CAS  Google Scholar 

  • Li H-T, Peng C-Z, Guan Y-H, Niu Y-F, Zhang L-X (2011) Investigation on the resources of A. obcordata var. obcordata. Lishizhen medicine and materia medica research. 22(12):2999

    Google Scholar 

  • Li-xia Z, Chao-zhong P, Ying-feng N, Hai-tao L (2011) Study on cutting propagation of Dai medicine Aspidopterys obcordata var. obcordata. Chin Agric Sci Bull 27(19):125–128

  • Li-xia Z, Ying-feng N, Hai-tao L, Chao-zhong P, Yan-hong G (2012) Preliminary study on seed germination characteristics of Dai medicine Aspidopterys obcordata var. obcordata. Seed 31(1):28–30

  • Lü YD, Zhao L, Xu XY, Wang L, Wang C, Zhang TZ, Guo WZ (2013) Characterization of expressed sequence tags from developing fibers of Gossypium barbadense and evaluation of insertion deletion variation in tetraploid cultivated cotton species. BMC Genomics 14:170

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mardis ER (2008a) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  Google Scholar 

  • Mardis ER (2008b) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAIEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc numerical taxonomy and multivariate analysis system. Version 2. 1. Exeter Software, Setauket, New York

    Google Scholar 

  • Saidi M, Movahedi K, Mehrabi AA, Kahrizi D (2013) Molecular genetic diversity of Satureja bachtiarica. Mol Biol Rep. 40:6501–6508

    Article  CAS  Google Scholar 

  • Schaal BA, Leverich WJ, Rogstad SH (1991) Comparison of methods for assessing genetic variation in plant conservation biology. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 123–134

    Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  Google Scholar 

  • Song M-F, Li Y-H, Zhang Z-L, Lv Y-N, Li X-L, Guang L (2015a) Inhibiting effect of A. obcordata var. obcordata on renal calculus. Chin J New Drugs 24(9):1047–1051

    Google Scholar 

  • Song M-F, Guang L, Chen X, Zhang Z-L, Lv Y-N, Li X-L, Li Y-H (2015b) Inhibitory effects of A. obcordata var. obcordata extract on renal calcium oxalate stone formation in rats. China Pharm 26(10):1329–1332

    Google Scholar 

  • Song M-F, Li Y-H, Li X-L, Zhang Z-L, Lv Y-n, Guang L (2016) Preventive effects of A. obcordata var. obcordata on renal tubular epithelial cells injury. Med Guide 35(3):249–252

    Google Scholar 

  • Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W, Shi L (2011) Next-generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn 11:333–343

    Article  Google Scholar 

  • Sulima P, Prinz K, Przyborowski JA (2017) Genetic diversity and genetic relationships of Purple Willow (Salix purpurea L.) from Natural Locations. Int J Mol Sci. 19(1):105

    Article  Google Scholar 

  • Sulima P, Prinz K, Przyborowski JA (2018) Genetic diversity and genetic relationships of Purple Willow (Salix purpurea L.) from natural locations. Int J Mol Sci 19(1):105

    Article  Google Scholar 

  • Tan Z-G (2010) One cases of cholecystolithiasis treated by A. obcordata var. obcordata. Chin J Nat Med 10:42–43

    Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  Google Scholar 

  • Wang H, Jiang J, Chen S, Qi X, Peng H, Li P, Song A, Guan Z, Fang W, Liao Y, Chen F (2013) Next-generation sequencing of the Chrysanthemum nankingense (Asteraceae) transcriptome permits large-scale unigene assembly and SSR marker discovery. PLoS ONE 8(4):e62293

    Article  CAS  Google Scholar 

  • Xiao-hua Li, Ying-feng N, Chao Y, Li-xia Z (2014) The chemical constituents of Aspidopterys Obcordata Hemsl by comprehensive preliminary test. Guiding J Trad Chin Med Pharma 20(5):17–21

    Google Scholar 

  • Yeh FC, Yang R, Boyle TJ, Ye Z, Xiyan JM (2000) POPGENE 32, Microsoft windows-based freeware for population genetic analysis. Molecular biology and biotechnology center University of Alberta, Edmonton

    Google Scholar 

  • Yongli C, Jia G (2000) Progress and problem of vine adaptive ecology. Chin J Ecol 19(6):28–33

    Google Scholar 

  • Yu L-D, Hu J-B (2009) Combination of A. obcordata var obcordata and five drenched fossils capsule in the treatment of renal calculi. Chin J Nat Med 10:25

    Google Scholar 

  • Yu JN, Won C, Jun J, Lim Y, Kwak M (2011) Fast and cost-effective mining of microsatellite markers using NGS technology: an example of a Korean water deer Hydropotes inermis argyropus. PLoS ONE 6(11):e26933

    Article  CAS  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, Mccown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208

    Article  CAS  Google Scholar 

  • Zhang Q-S, Bing-lian Xu, Liu L-d, Yuan Q-Q, Dong H-X, Cheng X-H, Lin D-L (2012) Analysis of genetic diversity among Chinese Pleurotus citrinopileatus singer cultivars using two molecular marker systems (ISSRs and SRAPs) and morphological traits. World J Microbiol Biotechnol 28:2237–2248

    Article  Google Scholar 

  • Zhan-lin L, Gui-fang Z (1999) Population genetics and its implications for conservation of rare and endangered plants. Chin Biodivers 7(4):340–346

    Google Scholar 

  • Zheng-feng W, Shao-lin P (2003) Plant conservation genetics. Acta Ecol Sin 23(1):158–166

    Google Scholar 

  • Zheng-feng W, Xue-jun Ge (2009) Not only genetic diversity: advances in plant conservation genetics. Biodivers Sci 17(4):330–339

    Article  Google Scholar 

Download references

Funding

This research was funded by CAMS Initiative for Innovative Medicine (Grant No. 2017-12M-B&R-09) and Special subsidies for public health service of TCM "the national survey of TCM resources" (Grant No. DSS, MOF. No 66/2017).

Author information

Authors and Affiliations

Authors

Contributions

L-XZ fund this study. Z-LZ designed the experiment, collected plant material, and analyzed experimental data. M-FS performed the experiment, analyzed experimental data, and drafted the manuscript. Y-HG and H-TL collected plant material. YZ provided experimental help. The authors are accountable for all aspects of the work.

Corresponding authors

Correspondence to Li-Xia Zhang or Zhong-Lian Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, MF., Guan, YH., Zhang, Y. et al. Genetic Diversity Assessment of a Chinese Medicinal Endemic Species, Aspidopterys obcordata var. obcordata, by Combined Molecular Marker Methods (ISSR & SRAP). Biochem Genet 59, 283–299 (2021). https://doi.org/10.1007/s10528-020-10001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-020-10001-2

Keywords

Navigation