Skip to main content

Advertisement

Log in

Microstructural evolution and mechanical properties of multi-directionally forged SiP/ZA22 composite

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The effect of multi-pass multi-directional forging (MDF) on the microstructure and mechanical properties of Zn–22Al–xSi (X = 4 and 8 wt. %) alloy, also known as SiP/ZA22 composite, was investigated. MDF process was applied at 100 °C for one, three, and five passes with the strain of 0.47 per pass. According to the results, MDF refined and homogenized the composites microstructure so that the average size of primary Si (SiP) particles reduced from 25.0 µm and 30.4 µm in as-cast ZA22-4Si and ZA22-8Si composites to about 6.2 µm and 7.3 µm in five-pass MDFed condition, respectively, and their distribution shifted to the smaller size range. Mechanical properties tests revealed that multi-pass MDF has softened the investigated composite. For instance, the hardness, tensile strength, and shear strength of ZA22-4Si composite reduced from 83 HV, 280 MPa, and 165 MPa in as-cast condition to about 58 HV, 160 MPa, and 118 MPa in the five-pass MDFed sample, respectively. This is while its fracture strain increased from 15% to about 40% with the strain rate of 1.2 × 10–3 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sharath PC, Udupa KR, Kumar GVP. Effect of multi directional forging on the microstructure and mechanical properties of Zn-24 wt% Al-2 wt% Cu alloy. Trans Indian Ins Metals. 2017;70(1):89–96.

    Article  Google Scholar 

  2. Liu Y, Li H-Y, Jiang H-F, Lu X-C. Effects of heat treatment on microstructure and mechanical properties of ZA27 alloy. Trans Nonferrous Met Soc China. 2013;23:642–9.

    Article  Google Scholar 

  3. Savaşkan T, Aydıner A. Effects of silicon content on the mechanical and tribological properties of monotectoid-based zinc–aluminium–silicon alloys. Wear. 2004;257:377–88.

    Article  Google Scholar 

  4. Turk A, Durman M, Sabri Kayali E. The effect of manganese on the microstructure and mechanical properties of zinc–aluminium based ZA-8 alloy. J Mater Sci. 2007;42:8298–305.

    Article  Google Scholar 

  5. Al-Qawabah S, Zaid AIO. Effect of Mo addition to ZA22 alloy grain refined by Ti-B on its metallurgical and mechanical characteristics in the as cast condition. Mater Sci Forum. 2019;886:64–8.

    Article  Google Scholar 

  6. Kurnaz SC, Sevik H, Türk A, Ozsarac U. The Effect of Ti–B and Sr on the mechanical behaviour of the Zinc–Aluminum-based ZA-12 alloy produced by gravity casting. Int. J. Mat. Res. (formerly Z Metallkd). 2006;97(8):1152–7.

    Article  Google Scholar 

  7. Anjan BN, Preetham Kumar GV. Microstructure and mechanical properties of ZA27 based SiC reinforced composite processed by multi directional forging. Mater Res Exp. 2018;5(10):106523.

    Article  Google Scholar 

  8. Zaid AIO, Mostafa AO. Comparison between Mo addition to zinc aluminum alloy, ZA22, grain refined by Ti and Ti-B after pressing by the equal channel angular press. ECAP Int J Sci Eng Res. 2016;7(5):1133–8.

    Google Scholar 

  9. Prasad BK. Tensile properties of some zinc-based alloys comprising 27.5% Al: effects of alloy microstructure, composition and test conditions. Mater Sci Eng A. 1998;245A:257–66.

    Article  Google Scholar 

  10. Dorantes-Rosales HJ, López-Hirata VM, Esquivel-González R, González-Velazquez JL, Moreno-Palmerin J, Torres-Castillo A. Zn–22Al–2Cu alloy phase transformations at different homogenizing temperatures. Met Mater Int. 2012;18(3):385–90.

    Article  Google Scholar 

  11. Michalik R, Chmiela B. Influence of solution heat treatment on structure and mechanical properties of ZnAl22Cu3 alloy. Arch Metall Mater. 2016;61(3):1581–6. https://doi.org/10.1016/j.msea.2005.05.078.

    Article  Google Scholar 

  12. Rajabi F, Taghiabadi R, Shaeri MH. Tribology of Si-rich TIG-deposited coatings on Zn–40Al–2Cu alloy. Surf Eng. 2020. https://doi.org/10.1080/02670844.2020.1728909.

    Article  Google Scholar 

  13. Yousefi D, Taghiabadi R, Shaeri MH, Abedinzadeh P. Enhancing the mechanical properties of Si particle reinforced ZA22 composite by Ti–B modification. Int J Metalcast. 2020. https://doi.org/10.1007/s40962-020-00447-w.

    Article  Google Scholar 

  14. Savaşkan T, Bican O. Effects of silicon content on the microstructural features and mechanical and sliding wear properties of Zn–40Al–2Cu–(0–5)Si alloys. Mater Sci Eng A. 2005;404(1–2):259–69. https://doi.org/10.1016/j.msea.2005.05.078.

    Article  Google Scholar 

  15. Michalik R. The effect of modification with rare earth elements on ZnAl22Cu3 alloy structure and mechanical properties. Arch Metall Mater. 2013;58(1):49–53.

    Article  Google Scholar 

  16. Zhang S, Zhao D. Aerospace materials handbook. USA: CRC Press; 2013.

    Google Scholar 

  17. Ansarian I, Shaeri MH, Ebrahimi M, Minárik P, Bartha K. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. J Alloys Comp. 2019;776:83–5.

    Article  Google Scholar 

  18. Dashti A, Shaeri MH, Taghiabadi R, Djavanroodi F, Vali Ghazvini F, Javadi H. Microstructure, texture, electrical and mechanical properties of AA-6063 processed by multi directional forging. Mater. 2018;11(12):2419.

    Article  Google Scholar 

  19. Gupta M, Ling S. Microstructure and mechanical properties of hypo/hyper-eutectic Al–Si alloys using a near-net shape forming technique. J Alloys Comp. 1999;287:284–94.

    Article  Google Scholar 

  20. Lachowicz MM, Lachowicz MB. Intergranular corrosion of the as cast hypoeutectic zinc–aluminium alloy. Arch Foundry Eng. 2017;17(3):79–84.

    Article  Google Scholar 

  21. Agapie M, Varga B. Analysis of phase transformations in eutectoid Zn–Al alloys. In: Proceedings of the 5th Int. Conf. Adv. Comp. Mater. Eng. Brasov, Romania, 2014;(1), pp 7–12.

  22. Arif MAM, Omar MZ, Muhamad N, Syarif J, Kapranos P. Microstructural evolution of solid-solution-treated Zn–22Al in the semisolid state. J Mater Sci Technol. 2013;29(8):765–74.

    Article  Google Scholar 

  23. Warmuzek M. Aluminium-silicon casting alloys: atlas of microfractographs, Materials Park, OH, USA. In: ASM Int., 2004.

  24. Ma K, Hu T, Yang H, Topping T, Yousefiani A, Lavernia EJ, Schoenung JM. Coupling of dislocations and precipitates: impact on the mechanical behavior of ultrafine grained Al–Zn–Mg alloys. Acta Mater. 2016;103:153–4.

    Article  Google Scholar 

  25. Edalati K, Hashiguchi Y, Iwaoka H, Matsunaga H, Valiev RZ, Horita Z. Long-time stability of metals after severe plastic deformation: softening and hardening by self-annealing versus thermal stability. Mater Sci Eng A. 2018;729:340–8.

    Article  Google Scholar 

  26. Lapovok R, Toth LS, Molinari A, Estrin Y. Strain localization patterns under equal-channel angular pressing. J Mech Phys Solids. 2009;57:122–36.

    Article  Google Scholar 

  27. Zhang NX, Kawasaki M, Huang Y, Langdon TG. The significance of self-annealing in two-phase alloys processed by high-pressure torsion. IOP Conf Ser Mater Sci Eng. 2014;63(1):012126.

    Article  Google Scholar 

  28. Purcek G, Altan BS, Miskioglu I, Ooi PH. Processing of eutectic Zn–5% Al alloy by equal-channel angular pressing. J Mater Process Technol. 2004;148(3):279–87.

    Article  Google Scholar 

  29. Wu Z, Sandlöbes S, Wu L, Hu W, Gottstein G, Korte-Kerzel S. Mechanical behaviour of Zn–Al–Cu–Mg alloys: Deformation mechanisms of as-cast microstructures. Mater Sci Eng A. 2016;651:675–7.

    Article  Google Scholar 

  30. Wu Z, Sandlöbes S, Rao J, Gibson JSL, Berkels B, Korte-Kerzel S. Local mechanical properties and plasticity mechanisms in a Zn–Al eutectic alloy. Mater Des. 2018;157:337–50.

    Article  Google Scholar 

  31. Sharath PC, Udupa KR, Kumar GVP. Effect of multi directional forging on impression creep behavior of Zn–24Al–2Cu alloy. Mater Today Proc. 2018;5(9):18211–20 (Part 3).

    Article  Google Scholar 

  32. Demirtas M, Purcek G, Yanar H, Zhang ZJ, Zhang ZF. Effect of different processes on lamellar-free ultrafine grain formation, room temperature superplasticity and fracture mode of Zn–22Al alloy. J Alloys Comp. 2016;663(5):775–83.

    Article  Google Scholar 

  33. Tanaka T, Higashi K. Superplasticity at room temperature in Zn–22Al alloy processed by equal-channel-angular extrusion. Mater Trans. 2000;45(4):1261–5.

    Article  Google Scholar 

  34. Yang CF, Pan JH, Chuang MC. Achieving high strain rate superplasticity via severe plastic deformation processing. J Mater Sci. 2008;43(18):6260–6.

    Article  Google Scholar 

  35. Tanaka T, Makii K, Kushibe A, Higashi K. Room temperature deformation behavior of Zn-22 mass% Al alloy with nanocrystalline structure. Mater Trans. 2002;43(10):2449–544.

    Article  Google Scholar 

  36. Kawasaki M, Langdon TG. Grain boundary sliding in a superplastic Zinc–Aluminum alloy processed using severe plastic deformation. Mater Trans. 2008;49(1):84–9.

    Article  Google Scholar 

  37. Hankin G, Toloczko M, Hamilton ML, Faulkner RG. Validation of the shear punch–tensile correlation technique using irradiated materials. J Nucl Mater. 1998;258:1651–6.

    Article  Google Scholar 

  38. Karthik V, Padmanabhan V, Vijayraghavan A, Kasiviswanathan KV, Raj B. Tensile–shear correlations obtained from shear punch test technique using a modified experimental approach. J Nucl Mater. 2009;393(3):42532.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Taghiabadi.

Ethics declarations

Conflict of interest

The authors had no funding sources or conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, D., Taghiabadi, R., Shaeri, M.H. et al. Microstructural evolution and mechanical properties of multi-directionally forged SiP/ZA22 composite. Archiv.Civ.Mech.Eng 20, 118 (2020). https://doi.org/10.1007/s43452-020-00124-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00124-z

Keywords

Navigation