Skip to main content
Log in

Exploring the Milk-Clotting and Proteolytic Activities in Different Tissues of Vallesia glabra: a New Source of Plant Proteolytic Enzymes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Proteolytic enzymes are widely distributed in nature, playing essential roles in important biological functions. Recently, the use of plant proteases at the industrial level has mainly increased in the food industry (e.g., cheesemaking, meat tenderizing, and protein hydrolysate production). Current technological and scientific advances in the detection and characterization of proteolytic enzymes have encouraged the search for new natural sources. Thus, this work aimed to explore the milk-clotting and proteolytic properties of different tissues of Vallesia glabra. Aqueous extracts from the leaves, fruits, and seeds of V. glabra presented different protein profiles, proteolytic activity, and milk-clotting activity. The milk-clotting activity increased with temperature (30–65 °C), but this activity was higher in leaf (0.20 MCU/mL) compared with that in fruit and seed extracts (0.12 and 0.11 MCU/mL, respectively) at 50 °C. Proteolytic activity in the extracts assayed at different pH (2.5–12.0) suggested the presence of different types of active proteases, with maximum activity at acidic conditions (4.0–4.5). Inhibitory studies indicated that major activity in V. glabra extracts is related to cysteine proteases; however, the presence of serine, aspartic, and metalloproteases was also evident. The hydrolytic profile of caseins indicated that V. glabra leaves could be used as a rennet substitute in cheesemaking, representing a new and promising source of proteolytic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rawlings, A. N. D., & Barrett, A. J. (1993). Evolutionary families of peptidases. Biochemical Journal., 290(1), 205–218.

    CAS  PubMed Central  Google Scholar 

  2. Van der Hoorn, R. A. L. (2008). Plant proteases: from phenotypes to molecular mechanisms. Annual Review of Plant Biology, 59(1), 191–223.

    PubMed  Google Scholar 

  3. Adamczyk, B., Smolander, A., Kitunen, V., & Godlewski, M. (2012). Proteoid roots and exudation of proteases by plant roots. In J. Vivanco & F. Baluska (Eds.), Secretions and exudates in biological systems (pp. 75–89). Berlin Heidelberg: Springer.

    Google Scholar 

  4. Jisha, V. N., Smitha, R. B., Pradeep, S., Sreedevi, S., Unni, K. N., Sajith, S., Priji, P., Josh, M. S., & Benjamin, S. (2013). Versatility of microbial proteases. Advances in Enzyme Research, 1(3), 39–51.

    Google Scholar 

  5. Feijoo-Siota, L., & Villa, T. G. (2011). Native and biotechnologically engineered plant proteases with industrial applications. Food and Bioprocess Technology, 4(6), 1066–1088.

    CAS  Google Scholar 

  6. Mazorra-Manzano, M. A., Ramírez-Suarez, J. C., & Yada, R. Y. (2018a). Plant proteases for bioactive peptides release: a review. Critical Reviews in Food Science and Nutrition, 58(13), 2147–2163.

    CAS  PubMed  Google Scholar 

  7. Salas, C. E., Gomes, M. T. R., Hernández, M., & Lopes, M. T. P. (2008). Plant cysteine proteinases: evaluation of the pharmacological activity. Phytochemistry, 69(12), 2263–2269.

    CAS  PubMed  Google Scholar 

  8. López-Expósito, I., Miralles, B., Amigo, L., & Hernández-Ledesma, B. (2017). Health effects of cheese components with a focus on bioactive peptides. In J. Frias, C. Martinez-Villaluenga, & E. Peñas (Eds.), Fermented foods in health and disease prevention (pp. 239–273). New York: Academic Press.

    Google Scholar 

  9. Fox, P. F., Guinee, T. P., Cogan, T. M., & McSweeney, P. L. H. (2017). Fundamentals of cheese science (2nd ed.pp. 185–229). New York: Springer.

    Google Scholar 

  10. Mazorra-Manzano, M. A., Moreno-Hernández, J. M., & Ramírez-Suarez, J. C. (2018b). Milk-clotting plant proteases for cheesemaking. In M. G. Guevara & G. R. Daleo (Eds.), Biotechnological applications of plant Proteolytic enzymes (pp. 21–41). Cham: Springer.

    Google Scholar 

  11. Jacob, M., Jaros, D., & Rohm, H. (2011). Recent advances in milk clotting enzymes. International Journal of Dairy Technology, 64(1), 14–33.

    CAS  Google Scholar 

  12. Veríssimo, P., Faro, C., Moir, A. J. G., Lin, Y., Tang, J., & Pires, E. (1996). Purification, characterization and partial amino acid sequencing of two new aspartic proteinases from fresh flowers of Cynara cardunculus L. European Journal of Biochemistry, 235(3), 762–768.

    PubMed  Google Scholar 

  13. Almeida, C. M., & Simões, I. (2018). Cardoon-based rennets for cheese production. Applied Microbiology and Biotechnology, 102(11), 4675–4686.

    CAS  PubMed  Google Scholar 

  14. Gimenez, G., & Albornoz, P. (2013). Anatomía foliar de Vallesia glabra (Apycynaceae), especie de importancia medicinal y en frugivoría. Lilloa, 50(1), 25–32.

    Google Scholar 

  15. Bourdy, G., Oporto, P., Gimenez, A., & Deharo, E. (2004). A search for natural bioactive compounds in Bolivia through a multidisciplinary approach: Part VI. Evaluation of the antimalarial activity of plants used by Isoceno-Guaranı Indians. Journal of Ethnopharmacology, 93(2–3), 269–277.

    CAS  PubMed  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurenment with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  17. Arima, K., Ya, J., & Iwasaki, S. (1970). Milk-clotting enzyme from Mucor pusillus var. Lindt. In E. G. Pearlman & L. Lorand (Eds.), Methods in enzymology (pp. 446–459). New York: Academic Press.

    Google Scholar 

  18. Kumar, A., Singh, V. K., & Jagannadham, M. V. (2007). Carnein, a serine protease from noxious plant weed Ipomoea carnea (morning glory). Journal of Agricultural and Food Chemistry, 55(5809), 5818.

    Google Scholar 

  19. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    CAS  Google Scholar 

  20. Díaz-López, M., Moyano-López, F. J., Alarcón-López, F. J., García-Carreño, F. L., & del Toro, M. A. N. (1998). Characterization of fish acid proteases by substrate–gel electrophoresis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 121(4), 369–377.

    Google Scholar 

  21. Mazorra-Manzano, M. A., Moreno-Hernandez, J. M., Ramirez-Suarez, J. C., & Torres-Llanez, M.d.J., Gonzalez-Cordova, A.F., & Vallejo-Cordoba, B. (2013a). Sour orange Citrus aurantium L. flowers: a new vegetable source of milk-clotting proteases. LWT-Food Science and Technology, 54(2), 325–330.

    CAS  Google Scholar 

  22. Singh, N., Jain, N., Kumar, R., Jain, A., Singh, N. K., & Rai, V. (2015). A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan. Frontiers in Plant Science, 6, 606.

    PubMed  PubMed Central  Google Scholar 

  23. Wang, W., Tai, F., & Chen, S. (2008). Optimizing protein extraction from plant tissues for enhanced proteomics analysis. Journal of Separation Science, 31(11), 2032–2039.

    CAS  PubMed  Google Scholar 

  24. Schaller, A. (2004). A cut above the rest: the regulatory function of plant proteases. Planta., 220(2), 183–197.

    CAS  PubMed  Google Scholar 

  25. Tan-Wilson, A. L., & Wilson, K. A. (2012). Mobilization of seed protein reserves. Physiologia Plantarum, 145(1), 140–153.

    CAS  PubMed  Google Scholar 

  26. Yadav, R. P., Patel, A. K., & Jagannadham, M. V. (2012). Neriifolin S, a dimeric serine protease from Euphorbia neriifolia Linn.: purification and biochemical characterisation. Food Chemistry, 132(3), 1296–1304.

    CAS  PubMed  Google Scholar 

  27. Jamir, K., & Seshagirirao, K. (2018). Purification, biochemical characterization and antioxidant property of ZCPG, a cysteine protease from Zingiber montanum rhizome. International Journal of Biological Macromolecules, 106, 719–729.

    CAS  PubMed  Google Scholar 

  28. Shewry, P. R., & Halford, N. G. (2002). Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany, 53(370), 947–958.

    CAS  PubMed  Google Scholar 

  29. Sandoval-Oliveros, M. R., & Paredes-López, O. (2013). Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). Journal of Agricultural and Food Chemistry, 61(1), 193–201.

    CAS  PubMed  Google Scholar 

  30. Bojórquez-Velázquez, E., Lino-López, G. J., Huerta-Ocampo, J. A., Barrera-Pacheco, A., de la Rosa, A. P. B., Moreno, A., & Osuna-Castro, J. A. (2016). Purification and biochemical characterization of 11S globulin from chan (Hyptis suaveolens L. Poit) seeds. Food Chemistry., 192, 203–211.

    PubMed  Google Scholar 

  31. Plaxton, W. C. (2019). Avoiding proteolysis during the extraction and purification of active plant enzymes. Plant and Cell Physiology, 60(4), 715–724.

    CAS  PubMed  Google Scholar 

  32. Salehi, M., Aghamaali, M. R., Sajedi, R. H., Asghari, S. M., & Jorjani, E. (2017). Purification and characterization of a milk-clotting aspartic protease from Withania coagulans fruit. International Journal of Biological Macromolecules, 98, 847–854.

    CAS  PubMed  Google Scholar 

  33. Rajagopalan, A., & Sukumaran, B. O. (2018). Three phase partitioning to concentrate milk clotting proteases from Wrightia tinctoria R. Br and its characterization. International Journal Of Biological Macromolecules, 118, 279–288.

    CAS  PubMed  Google Scholar 

  34. Afsharnezhad, M., Shahangian, S. S., & Sariri, R. (2019). A novel milk-clotting cysteine protease from Ficus johannis: purification and characterization. International Journal of Biological Macromolecules, 121, 173–182.

    CAS  PubMed  Google Scholar 

  35. Shi, Y., Prabakusuma, A. S., Zhao, Q., Wang, X., & Huang, A. (2019). Proteomic analysis of Moringa oleifera Lam. Leaf extract provides insights into milk-clotting proteases. LWT- Food Science and Technology, 109, 289–295.

    CAS  Google Scholar 

  36. Mazorra-Manzano, M. A., Perea-Gutiérrez, T. C., Lugo-Sánchez, M. E., Ramírez-Suarez, J. C., Torres-Llanez, M. J., González-Córdova, A. F., & Vallejo-Cordoba, B. (2013b). Comparison of the milk-clotting properties of three plant extracts. Food Chemistry, 141(3), 1902–1907.

    CAS  PubMed  Google Scholar 

  37. Sarmento, A. C., Lopes, H., Oliveira, C. S., Vitorino, R., Samyn, B., Sergeant, K., & Barros, M. T. (2009). Multiplicity of aspartic proteinases from cynara cardunculus L. Planta, 230(2), 429–439.

    CAS  PubMed  Google Scholar 

  38. Mazorra-Manzano, M. A., Moreno-Hernández, J. M., Torres-Llanez, M. J., Ramírez-Suarez, J. C., González-Córdova, A. F., & Vallejo-Córdoba, B. (2013c). Hydrolysis of proteins by an enzymatic extract of sour orange (Citrus aurantium) flowers and milk-clotting properties for cheese production. Biotecnia, 15(3), 29–33.

    Google Scholar 

  39. Vorster, B. J., Cullis, C., & Kunert, K. (2019). Plant vacuolar processing enzymes. Frontiers in Plant Science, 10, 479.

    PubMed  PubMed Central  Google Scholar 

  40. Moreno-Hernández, J. M. (2013). Caracterización de la actividad coagulante y proteolítica de extractos de flor de naranjo (Citrus aurantium L.) y purificación parcial de una de sus proteasas. Master Thesis. Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo Sonora, México.

  41. García-Magaña, M. L., Gonzalez-Borrallo, J., Montalvo-Gonzalez, E., Rudiño-Piñera, E., Sayago-Ayerdi, S. G., & Salazar-Leyva, J. A. (2018). Isoelectric focusing, effect of reducing agents and inhibitors: partial characterization of proteases extracted from Bromelia karatas. Applied Biological Chemistry, 61(4), 459–467.

    Google Scholar 

  42. Moreno-Hernández, J. M., Hernández-Mancillas, X. D., Coss-Navarrete, E. L., Mazorra-Manzano, M. A., Osuna-Ruiz, I., Rodríguez-Tirado, V. A., & Salazar-Leyva, J. A. (2017). Partial characterization of the proteolytic properties of an enzymatic extract from “Aguama” Bromelia pinguin L. fruit grown in Mexico. Applied Biochemistry and Biotechnology, 182(1), 181–196.

    PubMed  Google Scholar 

  43. Nishimura, K., Higashiya, K., Ueshima, N., Abe, T., & Yasukawa, K. (2020). Characterization of proteases activities in Ficus carica cultivars. Journal of Food Science., 85(3), 535–544.

    CAS  PubMed  Google Scholar 

  44. Shi, Y., Wang, X., & Huang, A. (2018). Proteomic analysis and food-grade enzymes of Moringa oleifer Lam. flower. International Journal of Biological Macromolecules., 115, 883–890.

    CAS  PubMed  Google Scholar 

  45. Wang, X., Shi, Y., He, R., Li, B., & Huang, A. (2020). Label-free quantitative proteomic analysis of the biological functions of Moringa oleifera seed proteins provides insights regarding the milk-clotting proteases. International Journal of Biological Macromolecules, 144, 325–333.

    CAS  PubMed  Google Scholar 

  46. de Farias, V. A., da Rocha Lima, A. D., Costa, A. S., de Freitas, C. D. T., da Silva Araújo, I. M., dos Santos Garruti, D., Dos Santos, G. D., de Figueiredo, E. A. T., & de Oliveira, H. D. (2020). Noni (Morinda citrifolia L.) fruit as a new source of milk-clotting cysteine proteases. Food Research international, 127, 108689.

    PubMed  Google Scholar 

  47. Luo, J., Xiao, C., Zhang, H., Ren, F., Lei, X., Yang, Z., & Yu, Z. (2018). Characterization and milk coagulating properties of Cynanchum otophyllum Schneid. proteases. Journal of Dairy Science, 101(4), 2842–2850.

    CAS  PubMed  Google Scholar 

  48. Watanabe, Y., Matsushima, S., Yamaguchi, A., & Shioi, Y. (2009). Characterization and cloning of cysteine protease that is induced in green leaves of barley. Plant Science, 176(2), 264–271.

    CAS  Google Scholar 

  49. Beka, R. G., Krier, F., Botquin, M., Guiama, V. D., Donn, P., Libouga, D. G., Mbofung, C. M., Dimitrov, K., Slomianny, M. C., Guillochon, D., & Vercaigne-Marko, D. (2014). Characterization of a milk-clotting extract from Balanites aegyptiaca fruit pulp. International Dairy Journal, 34(1), 25–31.

    CAS  Google Scholar 

  50. Gogoi, D., Ramani, S., Bhartari, S., Chattopadhyay, P., & Mukherjee, A. K. (2019). Characterization of active anticoagulant fraction and a fibrin(ogen)olytic serine protease from leaves of Clerodendrum colebrookianum, a traditional ethno-medicinal plant used to reduce hypertension. Journal of Ethnopharmacology, 243, 99–112.

    Google Scholar 

  51. Marino, G., Huesgen, P. F., Eckhard, U., Overall, C. M., Schröder, W. P., & Funk, C. (2014). Family-wide characterization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity. Biochemical journal, 457(2), 335–346.

    CAS  Google Scholar 

  52. Zhang, Y., Wang, H., Tao, L., & Huang, A. X. (2015). Milk-clotting mechanism of Dregea sinensis Hemsl. protease. Journal of Dairy Science., 98(12), 8445–8453.

    CAS  PubMed  Google Scholar 

  53. Raskovic, B., Lazic, J., & Polovic, N. (2016). Characterisation of general proteolytic, milk clotting and antifungal activity of Ficus carica latex during fruit ripening. Journal of the Science of Food and Agriculture, 96(2), 576–582.

    PubMed  Google Scholar 

  54. Llorente, B. E., Obregón, W. D., Avilés, F. X., Caffini, N. O., & Vairo-Cavalli, S. (2014). Use of artichoke (Cynara scolymus) flower extract as a substitute for bovine rennet in the manufacture of Gouda-type cheese: characterization of aspartic proteases. Food Chemistry, 159, 55–63.

    CAS  PubMed  Google Scholar 

  55. Kazemipour, N., Salehi, I. M., Valizadeh, J., & Sepehrimanesh, M. (2017). Clotting characteristics of milk by Withania coagulans: proteomic and biochemical study. International Journal of Food Properties, 20(6), 1290–1301.

    CAS  Google Scholar 

Download references

Acknowledgments

Gonzalez-Velazquez wants to thank the National Council of Science and Technology of Mexico (CONACyT) for the economic support during postgraduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Mazorra-Manzano.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Velázquez, D.A., Mazorra-Manzano, M.A., Martínez-Porchas, M. et al. Exploring the Milk-Clotting and Proteolytic Activities in Different Tissues of Vallesia glabra: a New Source of Plant Proteolytic Enzymes. Appl Biochem Biotechnol 193, 389–404 (2021). https://doi.org/10.1007/s12010-020-03432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03432-5

Keywords

Navigation