Skip to main content
Log in

Melting Points of Refractory SHS Products: Evaluation by Molecular Dynamics Methods

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Several approaches to theoretical estimation of melting points for refractory metals and compounds by molecular dynamics calculations were analyzed and a new time-saving approach applicable to small two-phase ensembles and personal computers was suggested. The results of numerical calculations for melting points of refractory metals (Ta, W, Mo, V, Cr, Ti, Zr, Hf) and compounds (TiC, TiN, TiB2, TaC) well agree with respective tabulated values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yeh, C.L. and Chen, Y.D., Synthesis of niobium carbonitride by self-propagating combustion of Nb–C system in nitrogen, Ceram. Int., 2005, vol. 31, no. 8, pp. 1031–1039. https://doi.org/10.1016/j.ceramint.2004.11.008

    Article  CAS  Google Scholar 

  2. Yeh, C.L. and Liu, E.W., Preparation of tantalum carbonitride by self-propagating high-temperature synthesis of Ta–C system in nitrogen, Ceram. Int., 2006, vol. 32, no. 6, pp. 653–658. https://doi.org/10.1016/j.ceramint.2005.04.024

    Article  CAS  Google Scholar 

  3. Yeh, C.L. and Chen, Y.D., Combustion synthesis of vanadium carbonitride from V–C powder compacts under nitrogen pressure, Ceram. Int., 2007, vol. 33, no. 3, pp. 365–371. https://doi.org/10.1016/j.ceramint.2005.09.027

    Article  CAS  Google Scholar 

  4. Dyjak, S., Wasilewska, M., and Cudzilo, S., Combustion synthesis of titanium carbonitrides, Cent. Eur. J. Energ. Mater., 2015, vol. 12, no. 2, pp. 249–259.

    CAS  Google Scholar 

  5. Methods for Phase Diagram Determination, Zhao, J.C., Ed., Amsterdam: Elsevier, 2007.

    Google Scholar 

  6. Manara, D., Sheindlin, M., Heinz, W., and Ronchi, C., New techniques for high-temperature melting measurements in volatile refractory materials via laser surface heating, Rev. Sci. Instrum., 2008. vol. 79, no. 11, pp. 113901. https://doi.org/10.1063/1.3005994

    Article  CAS  Google Scholar 

  7. Ushakov, S.V. and Navrotsky, A., Experimental approaches to the thermodynamics of ceramics above 1500°C, J. Am. Ceram. Soc., 2012, vol. 95, no. 5, pp. 1463–1482. https://doi.org/10.1111/j.1551-2916.2012.05102.x

    Article  CAS  Google Scholar 

  8. Buinevich, V.S., Nepapushev, A.A., Moskovskikh, D.O., Trusov, G.V., Kuskov K.V., Vadchenko S.G., Rogachev, A.S., and Mukasyan, A.S., Fabrication of ultra-high-temperature nonstoichiometric hafnium carbonitride via combustion synthesis and spark plasma sintering, Ceram. Int., in press, available online 17 March 2020. https://doi.org/10.1016/j.ceramint.2020.03.158

  9. Hong, Q.J. and Walle, A., Prediction of the material with highest known melting point from ab initio molecular dynamics calculations, Phys. Rev. B, 2015, vol. 92, 020104. https://doi.org/10.1103/PhysRevB.92.020104

    Article  CAS  Google Scholar 

  10. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 1995, vol. 117, no. 1, pp. 1–19. http://lammps.sandia.gov/

    Article  CAS  Google Scholar 

  11. Zhong, L., Wang, J., Sheng, H., Zhang, Z., and Mao, S.X., Formation of monatomic metallic glasses through ultrafast liquid quenching, Nature, 2014, vol. 512, no. 7513, pp. 177–180. https://doi.org/10.1038/nature13617

    Article  CAS  Google Scholar 

  12. Kresse, G. and Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Math. Sci., 1996, vol. 6, no. 1, pp. 15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-33-00641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Rogachev.

Additional information

Translated by Yu. Scheck

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogachev, S.A. Melting Points of Refractory SHS Products: Evaluation by Molecular Dynamics Methods. Int. J Self-Propag. High-Temp. Synth. 29, 133–137 (2020). https://doi.org/10.3103/S1061386220030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386220030085

Keywords:

Navigation