Skip to main content
Log in

Density Functional Approach to the Molecular Theory of Rod-Coil Diblock Copolymers

  • THEORY AND SIMULATION
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The general density functional approach is used to develop a molecular-statistical theory of rod-coil diblock copolymers which is valid in the case of both weak and strong segregation. The free energy of the rod-coil copolymer is expressed as a functional of the number densities of rod and coil monomers which depend on the translational and orientational degrees of freedom. The equilibrium densities are determined by minimization of the free energy functional and depend on the orientational and translational order parameters of the monomers. The order parameters are calculated numerically by minimization of the free energy taking into account the incompressibility condition within the formalism of Lagrange multipliers. Phase diagrams are obtained and the profiles of orientational and translational order parameters are presented as functions of temperature and the fraction of coil fragments. It is shown that the lamellar phase possesses strong orientational order and the stability of the phase is increasing with the increasing fraction of rod monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. A. Segalman, B. McCulloch, S. Kirmayer, and J. J. Urban, Macromolecules 42, 9205 (2009).

    Article  CAS  Google Scholar 

  2. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).

    Article  CAS  Google Scholar 

  3. Y. Tao, B. McCulloch, S. Kim, and R. A. Segalman, Soft Matter 5, 4219 (2009).

    Article  CAS  Google Scholar 

  4. C. L. Chochos, J. K. Kallitsis, and V. G. Gregoriou, J. Phys. Chem. B 109, 8755 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. S. Becker, C. Ego, A. C. Grimsdale, E. J. List, D. Marsitzky, A. Pogantsch, S. Setayesh, G. Leising, and K. Mullen, Synth. Met. 125, 73 (2001).

    Article  Google Scholar 

  6. Y. Tao, B. Ma, and R. A. Segalman, Macromolecules 41, 7152 (2008).

    Article  CAS  Google Scholar 

  7. H. M. Konig, T. Gorelik, U. Kolb, and A. F. M. Kilbinger, J. Am. Chem. Soc. 129, 704 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Y. Pae and F. W. Harris, J. Polym. Sci., Part A: Polym. Chem. 38, 4247 (2000).

    Article  CAS  Google Scholar 

  9. A.-V. Ruzette and L. Leibler, Nat. Mater. 4, 19 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. G. Rabani, H. Luftmann, and A. Kraft, Polymer 47, 4251 (2006).

    Article  CAS  Google Scholar 

  11. A. Semenov and S. Vasilenko, J. Exp. Theor. Phys. 63, 70 (1986).

    Google Scholar 

  12. R. Hołyst and M. Schick, J. Chem. Phys. 96, 730 (1992).

    Article  Google Scholar 

  13. M. Reenders and G. ten Brinke, Macromolecules 35, 3266 (2002).

    Article  CAS  Google Scholar 

  14. L. Leibler, Macromolecules 13, 1602 (1980).

    Article  CAS  Google Scholar 

  15. M. Muller and M. Schick, Macromolecules 29, 8900 (1996).

    Article  Google Scholar 

  16. J.-Z. Chen, C.-X. Zhang, Z.-Y. Sun, Y.-S. Zheng, and L.-J. An, J. Chem. Phys. 124, 104907 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. V. Pryamitsyn and V. Ganesan, J. Chem. Phys. 120, 5824 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. M. W. Matsen and C. Barrett, J. Chem. Phys. 109, 4108 (1998).

    Article  CAS  Google Scholar 

  19. Y. A. Kriksin and P. G. Khalatur, Macromol. Theory Simul. 21, 382 (2012).

    Article  CAS  Google Scholar 

  20. T. Ohta and K. Kawasaki, Macromolecules 19, 2621 (1986).

    Article  CAS  Google Scholar 

  21. T. Uneyama and M. Doi, Macromolecules 38, 196 (2005).

    Article  CAS  Google Scholar 

  22. D. Düchs and D. E. Sullivan, J. Phys.: Condens. Matter 14, 12189 (2002).

    Google Scholar 

  23. R. C. Hidalgo, D. E. Sullivan, and J. Z. Y. Chen, J. Phys.: Condens. Matter 19, 376107 (2007).

    Google Scholar 

  24. J. Tang, Y. Jiang, X. Zhang, D. Yan, and J. Z. Y. Chen, Macromolecules 48, 9060 (2015).

    Article  CAS  Google Scholar 

  25. W. Song, P. Tang, F. Qiu, Y. Yang, and A.-C. Shi, Soft Matter 7, 929 (2011).

    Article  CAS  Google Scholar 

  26. Y. Jiang and J. Z. Y. Chen, Phys. Rev. Lett. 110, 138305 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. S. Li, Y. Jiang, and J. Z. Y. Chen, Soft Matter 10, 8932 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Y. Cai, P. Zhang, and A.-C. Shi, Soft Matter 13, 4607 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. J. Gao, W. Song, P. Tang, and Y. Yang, Soft Matter 7, 5208 (2011).

    Article  CAS  Google Scholar 

  30. J. Gao, P. Tang, and Y. Yang, Soft Matter 9, 69 (2013).

    Article  CAS  Google Scholar 

  31. Y. Jiang and J. Z. Y. Chen, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 88, 042603 (2013).

    Google Scholar 

  32. M. A. Osipov, in Handbook of Liquid Crystals (Wiley-VCH Verlag GmbH, Weinheim, 2014) pp. 40–71.

    Google Scholar 

  33. R. Evans, in Fundamentals of Inhomogeneous Fluids (Decker, New York, 1992).

    Google Scholar 

  34. Y. Singh, Phys. Rev. A: At., Mol., Opt. Phys. 30, 583 (1984).

    CAS  Google Scholar 

  35. T. J. Sluckin and P. Shukla, J. Phys. A: Math. Gen. 16, 1539 (1983).

    Article  CAS  Google Scholar 

  36. L. Longa, J. Stelzer, and D. Dunmur, J. Chem. Phys. 109, 1555 (1998).

    Article  CAS  Google Scholar 

  37. A. Perera, G. N. Patey, and J. J. Weis, J. Chem. Phys. 89, 6941 (1988).

    Article  CAS  Google Scholar 

  38. I. R. M. Jean-Pierre Hansen, Theory of Simple Liquids; with Applications to Soft Matter (Elsevier LTD, Oxford, 2013).

    Google Scholar 

  39. E. F. David and K. S. Schweizer, J. Chem. Phys. 100, 7767 (1994).

    Article  CAS  Google Scholar 

  40. K. S. Schweizer and J. G. Curro, in Advances in Polymer Science (Springer, Berlin; Heidelberg, 1997) pp. 319–377.

    Google Scholar 

  41. A. L. Kholodenko, Ann. Phys. 202, 186 (1990).

    Article  CAS  Google Scholar 

  42. A. L. Kholodenko, Macromolecules 26, 4179 (1993).

    Article  CAS  Google Scholar 

  43. A. J. Spakowitz and Z.-G. Wang, Macromolecules 37, 5814 (2004).

    Article  CAS  Google Scholar 

  44. S. Stepanow, Eur. Phys. J. B 39, 499 (2004).

    Article  CAS  Google Scholar 

  45. S. Stepanow, J. Phys.: Condens. Matter 17, S1799 (2005).

    CAS  Google Scholar 

  46. X. Zhang, Y. Jiang, B. Miao, Y. Chen, D. Yan, and J. Z. Y. Chen, Soft Matter 10, 5405 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. J. S. Pedersen and P. Schurtenberger, Macromolecules 29, 7602 (1996).

    Article  CAS  Google Scholar 

  48. H.-P. Hsu, W. Paul, and K. Binder, J. Chem. Phys. 137, 174902 (2012).

    Article  PubMed  CAS  Google Scholar 

  49. H.-P. Hsu, W. Paul, and K. Binder, Polym. Sci., Ser. C 55, 39 (2013).

    Article  CAS  Google Scholar 

  50. H. Wu, L. He, X. Wang, Y. Wang, and Z. Jiang, Soft Matter 10, 6278 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. B. D. Olsen and R. A. Segalman, Mater. Sci. Eng., R 62, 37 (2008).

Download references

ACKNOWLEDGMENTS

M.A.O and M.V.G. are grateful to Ya. Kudryavtsev for many interesting discussions.

Funding

The authors are grateful to Russian Science Foundation, Grant no. 19-13-00398 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Gorkunov.

Ethics declarations

The authors declare that they have no conflict of interest.

Self Consistent Equations for the Order Parameters

Self Consistent Equations for the Order Parameters

The phase diagram in Fig. 4 has been calculated by direct substitution of the incompressibility condition into the free energy (51) and subsequent minimization with respect to the order parameters \(\sigma \) and \(S\) and the single translational order parameter \(\psi \):

$$\psi = {{\psi }_{r}} = - \frac{{{{f}_{c}}}}{{{{f}_{r}}}}{{\psi }_{c}}.$$
(87)

This minimization yields the following expressions for the order parameters ψ and σ:

$$\begin{gathered} \tilde {\psi } = {{\psi }_{r}}\frac{{C_{{rr}}^{{(2)}}(C_{{rr}}^{{(2)}} - 2C_{{rc}}^{{(2)}}) - 4\beta {{J}_{2}}(C_{{rr}}^{{(0)}} - C_{{rc}}^{{(0)}} + \chi )}}{{{{{(C_{{rr}}^{{(2)}} - 2C_{{rc}}^{{(2)}})}}^{2}} - 4\beta {{J}_{2}}(C_{{rr}}^{{(0)}} + C_{{cc}}^{{(0)}} - 2C_{{rc}}^{{(0)}} + 2\chi )}} \\ \, + {{\psi }_{c}}\frac{{{{f}_{c}}}}{{{{f}_{r}}}}\frac{{2C_{{rc}}^{{(2)}}(C_{{rr}}^{{(2)}} - 2C_{{rc}}^{{(2)}}) + 4\beta {{J}_{2}}(C_{{cc}}^{{(0)}} - C_{{rc}}^{{(0)}} + \chi )}}{{{{{(C_{{rr}}^{{(2)}} - 2C_{{rc}}^{{(2)}})}}^{2}} - 4\beta {{J}_{2}}(C_{{rr}}^{{(0)}} + C_{{cc}}^{{(0)}} - 2C_{{rc}}^{{(0)}} + 2\chi )}}, \\ \end{gathered} $$
(88)

and

$$\tilde {\sigma } = \sigma - \left( {{{\psi }_{r}} + \frac{{{{f}_{c}}}}{{{{f}_{r}}}}{{\psi }_{c}}} \right)\frac{{4C_{{cr}}^{{(2)}}(C_{{rr}}^{{(0)}} - C_{{rc}}^{{(0)}} + \chi ) + 2C_{{rr}}^{{(2)}}(C_{{cc}}^{{(0)}} - C_{{rc}}^{{(0)}} + \chi )}}{{{{{(C_{{rr}}^{{(2)}} - 2C_{{rc}}^{{(2)}})}}^{2}} - 4\beta {{J}_{2}}(C_{{rr}}^{{(0)}} + C_{{cc}}^{{(0)}} - 2C_{{rc}}^{{(0)}} + 2\chi )}},$$
(89)

where the order parameters \({{\psi }_{r}},{{\psi }_{c}}\) and σ are defined by standard equations (39)–(41) as averages of the corresponding microscopic quantities with the one-particle distribution functions. One can readily see that the self-consistency of the theory is broken because it requires \(\tilde {\psi } = {{\psi }_{r}} = - ({{f}_{c}}{\text{/}}{{f}_{r}}){{\psi }_{c}}\) and \(\tilde {\sigma } = \sigma \) which does not follow from these equations. As a result of this inconsistency the order parameter can exceed, for example, the unit value, as can be seen in Fig. 5.

In contrast, it can be shown that the minimization of the free energy (83) with respect to the order parameters \({{\psi }_{r}},{{\psi }_{c}},\sigma \) and S taking into account the equation for λ yields the self-consistent equations for all order parameters which directly correspond to their general definitions given by Eqs. (39)(41).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, M.A., Gorkunov, M.V. & Antonov, A.A. Density Functional Approach to the Molecular Theory of Rod-Coil Diblock Copolymers. Polym. Sci. Ser. A 62, 562–577 (2020). https://doi.org/10.1134/S0965545X20050132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20050132

Navigation