Skip to main content
Log in

Thermal Behavior of Polyurethane Ionomers Based on Amino Ethers of Orthophosphoric Acid

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The products of triethanolamine- and triethylamine-catalyzed reactions of etherification of orthophosphoric acid using poly(oxypropylene glycol)-1000 are studied. It is shown that the nature of tertiary amine markedly influences the completeness of the etherification reaction. When using triethanolamine, its hydroxyl groups are also involved in the etherification of orthophosphoric acid. The resultant tertiary ammonium, which is a central unit of the synthesized branched amino ethers of orthophosphoric acid, is responsible for incomplete etherification and existence of space-separated ionic pairs in the structure of amino ethers. In the case of triethylamine, the etherification of orthophosphoric acid occurs almost completely to yield polyphosphates. The thermal behavior of ionomeric and nonionomeric polyurethanes is investigated. It is found that, for polyurethanes containing ionic groups, the glass transition temperature is much higher than that of nonionomeric polyurethanes. It is shown that phosphorus-containing nonionomeric polyurethanes possess higher thermal stability in inert atmosphere than phosphorous-containing polyurethane ionomers. The onset temperature of the thermal degradation for nonionomeric polyurethanes decreases considerably with an increase in the content of polyphosphates. Polyurethane ionomers synthesized using phospholipids feature a lower thermal stability than polyurethanes based on amino ethers of orthophosphoric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. O. Jaudouin, J.-J. Robin, J.-M. Lopez-Cuesta, D. Perrin, and C. Imbert, Polym Int. 61, 495 (2012).

    Article  CAS  Google Scholar 

  2. S. Hu and F. You, Procedia Eng. 52, 145 (2013).

    Article  CAS  Google Scholar 

  3. P. Krol, B. Krol, S. Pikus, and M. Kozak, Colloid Polym. Sci. 285, 169 (2006).

    Article  CAS  Google Scholar 

  4. S. Opera and S. Vlad, J. Optoelectron. Adv. Mater. 8, 675 (2006).

    Google Scholar 

  5. E. Millan, M. Ramirez, and G. Perdomo, Acta Cient. Venez. 51, 150 (2000).

    CAS  Google Scholar 

  6. D. K. Chattopadhyay, B. Sreedhar, and K. V. S. N. Raju, J. Appl. Polym. Sci. 95, 1509 (2005).

    Article  CAS  Google Scholar 

  7. M. Malik and R. Kaur, Polym. Eng. Sci. 58, 112 (2018).

    Article  CAS  Google Scholar 

  8. R. Xie, D. Bhattacharjee, and J. Argyropoulos, J. Appl. Polym. Sci. 113, 839 (2009).

    Article  CAS  Google Scholar 

  9. C. Hepburn, Iran. J. Polym. Sci. Technol. 1, 1 (1992).

    Google Scholar 

  10. I. Javni and V. Divjakovic, J. Polym. Sci., Part B: Polym. Phys. 36, 221 (1998).

    Article  Google Scholar 

  11. S. Kang, D. Ku, J. Lim, Y. Yang, N. Kwak, and T. Hwang, Macromol. Res. 13, 212 (2005).

    Article  CAS  Google Scholar 

  12. J. Simon, F. Barla, A. Kelemen-Haller, F. Farkas, and M. Kraxner, Chromatografia 25, 99 (1988).

    Article  CAS  Google Scholar 

  13. T. Servay, R. Voelkel, H. Schmiedberger, and S. Lehmann, Polymer 41, 5247 (2000).

    Article  CAS  Google Scholar 

  14. J. Datta and A. Balas, J. Therm. Anal. Calorim. 74, 615 (2003).

    Article  CAS  Google Scholar 

  15. F. Bellucci, G. Camino, A. Frache, and A. Sarra, Polym. Degrad. Stab. 92, 425 (2007).

    Article  CAS  Google Scholar 

  16. Z. Wang, E. Han, and W. Ke, Polym. Degrad. Stab. 91, 1937 (2006).

    Article  CAS  Google Scholar 

  17. J. P. Madden, G. K. Baker, and C. H. Smith, A Study of Polyether-Polyol- and Polyester-Polyol-Based Rigid Urethane Foam Systems (Allied-Signal Aerospace Co., Kansas City, MO, 1994).

    Google Scholar 

  18. M. Barikani and M. Barmar, Iran. Polym. J. 5, 231 (1996).

    CAS  Google Scholar 

  19. I. M. Davletbaeva, I. I. Zaripov, R. R. Karimullin, A. M. Gumerov, R. S. Davletbaev, R. R. Sharifullin, and V. V. Parfenov, Polym. Sci., Ser. B 59, 43 (2017).

    Article  CAS  Google Scholar 

  20. I. M. Davletbaeva, I. I. Zaripov, R. R. Karimullin, A. M. Gumerov, R. S. Davletbaev, and G. V. Burmakina, Polym. Sci., Ser. B 59, 69 (2017).

    Article  CAS  Google Scholar 

  21. M. Dumont, X. Kong, and S. Narine, J. Appl. Polym. Sci. 117, 3196 (2010).

    CAS  Google Scholar 

  22. J. Le, J. Kim, W. Jung, and Y. Park, J. Mater. Sci. 42, 3936 (2007).

    Article  CAS  Google Scholar 

  23. S. E. Mitrofanova, I. N. Bakirova, L. A. Zenitova, A. R. Galimzyanova, and E. S. Nefed’ev, Russ. J. Appl. Chem. 82, 1630 (2009).

    Article  CAS  Google Scholar 

  24. N. P. Iyer, A. S. Nasar, T. P. Gnanarajan, and G. Radhakrishnan, Polym. Int. 50, 693 (2001).

    Article  CAS  Google Scholar 

  25. W. Huanyu, K. Huiguang, S. Wenfang, N. Wenfang, and S. Xiaofeng, J. Coat. Technol. 75, 37 (2003).

    Article  Google Scholar 

  26. A. Asif, L. Hu, and W. Shi, Colloid Polym. Sci. 287, 1041 (2009).

    Article  CAS  Google Scholar 

  27. Q. Gao, H. Li, and X. Zeng, J. Cent. South Univ. 19, 63 (2012).

    Article  CAS  Google Scholar 

  28. V. V. Korshak and S. V. Vinogradova, Russ. Chem. Rev. 37, 885 (1968).

    Article  Google Scholar 

  29. S. V. Levchik and E. D. Weil, Polym. Int. 53, 1585 (2004).

    Article  CAS  Google Scholar 

  30. H. Park, H. You, H. Jo, I. Shim, H. Hahm, S. Kim, and Y. Kim, J. Coat. Technol. Res. 3, 53 (2006).

    Article  CAS  Google Scholar 

  31. Y. Zhang, Y. -P. Ni, M. -X. He, X. -L. Wang, L. Chen, Y. -Z. Wang, Polymer 60, 50 (2015).

    Article  CAS  Google Scholar 

  32. A. Battig, J. Markwart, W. Frederik, and B. Schartel, RSC Polym. Chem. Ser. 10, 4346 (2019).

    Article  CAS  Google Scholar 

  33. K. Adachi, H. Irie, T. Sato, A. Uchibori, M. Shiozawa, and Y. Tezuka, Macromolecules 38, 10210 (2005).

    Article  CAS  Google Scholar 

  34. A. Eisenberg and M. Navratil, Macromolecules 6, 604 (1973).

    Article  CAS  Google Scholar 

  35. E. A. Lysenko, T. K. Bronich, E. V. Slonkina, A. Eisenberg, V. A. Kabanov, and A. V. Kabanov, Macromolecules 35, 6351 (2002).

    Article  CAS  Google Scholar 

  36. E. A. Lysenko, T. K. Bronich, E. V. Slonkina, A. Eisenberg, V. A. Kabanov, and A. V. Kabanov, Macromolecules 35, 6344 (2002).

    Article  CAS  Google Scholar 

  37. I. M. Davletbaeva, O. Yu. Emelina, I. V. Vorotyntsev, R. S. Davletbaev, E. S. Grebennikova, A. N. Petukhov, A. I. Ahkmetshina, T. S. Sazanova, and V. V. Loskutov, RSC Adv. 5, 65674 (2015).

  38. I. M. Davletbaeva, G. R. Nurgaliyeva, A. I. Akhmetshina, R. S. Davletbaev, A. A. Atlaskin, T. S. Sazanova, S. V. Efimov, V. V. Klochkov, and I. V. Vorotyntsev, RSC Adv. 6, 111109 (2016).

  39. I. M. Davletbaeva, S. E. Dulmaev, O. O. Sazonov, A. V. Klinov, R. S. Davletbaev, and A. M. Gumerov, RSC Adv. 9, 23535 (2019).

  40. S. N. Jaisankar, A. Anandprabu, Y. Lakshminarayana, and G. Radhakrishnan, J. Mater. Sci. 35, 1065 (2000).

    Article  CAS  Google Scholar 

  41. D. K. Kakati, R. Gosain, and M. H. George, Polymer 35, 398 (1994).

    Article  CAS  Google Scholar 

  42. Y. S. Ding, R. A. Register, Chang-zheng Yang, and S. L. Coope, Polymer 30, 1204 (1989).

    Article  CAS  Google Scholar 

  43. K. Chen, R. Liu, C. Zou, Q. Shao, Y. Lan, X. Cai, and L. Zhai, Sol. Energy Mater. Sol. Cells 130, 466 (2014).

    Article  CAS  Google Scholar 

  44. K. K. S. Hwang, C. -Z. Yang, and S. L. Cooper, Polym. Eng. Sci. 21, 1027 (1981).

    Article  CAS  Google Scholar 

  45. Y. M. Lee, J. C. Lee, and B. K. Kim, Polymer 35, 1095 (1994).

    Article  CAS  Google Scholar 

  46. P. K. H. Lam, M. H. George, and J. A. Barrie, Polymer 30, 2320 (1989).

    Article  CAS  Google Scholar 

  47. P. Krol and B. Krol, J. Mater. Sci. 5, 73 (2020).

    Article  CAS  Google Scholar 

  48. P. Krol, B. Krol, M. Zenker, and J. Subocz, Colloid Polym. Sci. 293, 2941 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. B. Krol, K. Pielichowska, P. Krol, and P. Chmielarz, Polym. Adv. Technol. 28, 1366 (2017).

    Article  CAS  Google Scholar 

  50. Y. Xu, S. Zhang, S. Wang, and J. Wang, Polymer 154, 258 (2018).

    Article  CAS  Google Scholar 

  51. Y. Nakayama, T. Inaba, Y. Toda, R. Tanaka, Z. Cai, T. Shiono, H. Shirahama, and C. Tsutsumi, J. Polym. Sci., Part A: Polym. Chem. 51, 4423 (2013).

    Article  CAS  Google Scholar 

  52. S. Banerjee, A. Mishra, M. M. Singh, B. Maili, B. Ray, and P. Maili, RSC Adv. 1, 199 (2011).

  53. S. N. Jaisankar, R. M. Sankar, K. S. Meera, and A. B. Mandal, Soft Mater. 11, 55 (2013).

    Article  CAS  Google Scholar 

  54. J. Yang, Z. Wang, Z. Zeng, and Y. Chen, J. Appl. Polym. Sci. 10, 1818 (2002).

    Article  CAS  Google Scholar 

  55. K. Mequanint, R. Sanderson, and H. Pasch, Polym. Degrad. Stab. 77, 121 (2002).

    Article  CAS  Google Scholar 

  56. I. M. Davletbaeva, O. O. Sazonov, A. R. Fazlyev, R. S. Davletbaev, S. V. Efimov, and V. V. Klochkov, RSC Adv. 9, 18599 (2019).

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-19-00136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Davletbaeva.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davletbaeva, I.M., Sazonov, O.O., Fazlyev, A.R. et al. Thermal Behavior of Polyurethane Ionomers Based on Amino Ethers of Orthophosphoric Acid. Polym. Sci. Ser. A 62, 458–469 (2020). https://doi.org/10.1134/S0965545X2005003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X2005003X

Navigation