Skip to main content
Log in

Experimental and theoretical investigations on thermal conductivity of a ferrofluid under the influence of magnetic field

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The effect of the strength and orientation of magnetic field with respect to the temperature gradient on the effective thermal conductivity \(\lambda_{eff}(H)\), in a kerosene-based ferrofluid with magnetite particles is reported. A new theoretical model to explain the experimental dependence \(\lambda_{eff}(H)\), obtained for both the parallel and perpendicular orientation of the magnetic field, relative to the temperature gradient is proposed, based on the Sillars equation (which is applied for the first time to a ferrofluid in this purpose). For computing \(\lambda_{theor}\), we have considered that the particle agglomerations, arranged in field-induced microstructures, have ellipsoid forms and the ratio a/b between the major axis and the minor axis of the ellipsoid increases with increasing the magnetic field strength. Using the proposed theoretical model, we established for the first time a semi-empirical relationship between the ratio, a/b and the magnetic field, H, both for parallel and perpendicular H relative to the temperature gradient, determining then the dependence on H of \(\lambda_{theor}\). The theoretical results are in agreement with the experimental measurements. The reported results are of great practical importance and show that ferrofluids may be useful for incorporation in magnetic tuneable heat transfer devices or for other potential thermal applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.U.S. Choi, J. Heat Transfer 131, 033106 (2009)

    Article  Google Scholar 

  2. J. Philip, P.D. Shima, Adv. Colloid Interface Sci. 183--184, 30 (2012)

    Article  Google Scholar 

  3. M. Farbod, A. Ahangarpour, Phys. Lett. A 380, 4044 (2016)

    Article  ADS  Google Scholar 

  4. R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, 1985)

  5. P.C. Fannin, C.N. Marin, V. Socoliuc, G.M. Istratuca, A.T. Giannitsis, J. Phys. D: Appl. Phys. 36, 1227 (2003)

    Article  ADS  Google Scholar 

  6. Mohamad Ali Bijarchi, Mohammad Behshad Shafii, Langmuir 36, 7724 (2020)

    Article  Google Scholar 

  7. Amirhossein Favakeh, Mohamad Ali Bijarchi, Mohammad Behshad Shafii, J. Magn. & Magn. Mater. 498, 66134 (2020)

    Google Scholar 

  8. Mohamad Ali Bijarchi, Amirhossein Favakeh, Mohammad Behshad Shafii, J. Ind. Eng. Chem. 84, 106 (2020)

    Article  Google Scholar 

  9. Q. Li, Y. Xuan, J. Wang, Exp. Therm. Fluid Sci. 30, 109 (2005)

    Article  Google Scholar 

  10. J. Philip, P.D. Shima, B. Raj, Appl. Phys. Lett. 91, 203108 (2007)

    Article  ADS  Google Scholar 

  11. A. Gavili, F. Zabihi, T.D. Isfahani, J. Sabbaghzadeh, Exp. Therm. Fluid Sci. 41, 94 (2012)

    Article  Google Scholar 

  12. Mostafa Zarei Saleh Abad, Massoud Ebrahimi-Dehshali, Mohamad Ali Bijarchi, Mohammad Behshad Shafii, Ali Moosavi, Heat Transfer 48, 2700 (2019)

    Google Scholar 

  13. H. Hong, B. Wright, J. Wensel, S. Jin, X.R. Ye, W. Roy, Synth. Met. 157, 437 (2007)

    Article  Google Scholar 

  14. S. Vinod, J. Philip, J. Magn. & Magn. Mater. 444, 29 (2017)

    Article  ADS  Google Scholar 

  15. Sithara Vinod, John Philip, J. Mol. Liq. 298, 112047 (2020)

    Article  Google Scholar 

  16. Amir Karimi, S. Salman, S. Afghahi, Hamed Shariatmadar, Mehdi Ashjaee, Thermochim. Acta 598, 59 (2014)

    Article  Google Scholar 

  17. Q. Xue, W.M. Xu, Mater. Chem. Phys. 90, 298 (2005)

    Article  ADS  Google Scholar 

  18. W. Duangthongsuk, S. Wongwises, Exp. Therm. Fluid Sci. 33, 706 (2009)

    Article  Google Scholar 

  19. P.M. Hui, X. Zhang, A.J. Markworth, D. Stroud, J. Mater. Sci. 34, 5497 (1999)

    Article  ADS  Google Scholar 

  20. X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transfer 13, 474 (1999)

    Article  Google Scholar 

  21. R.L. Hamilton, O.K. Crosser, Ind. Eng. Chem. Fundam. 1, 187 (1962)

    Article  Google Scholar 

  22. L. Yang, X. Xu, Int. Commun. Heat Transfer 81, 42 (2017)

    Article  Google Scholar 

  23. N.S. Susan Mousavi, Sunil Kumar, J. Appl. Phys. 123, 043902 (2018)

    Article  ADS  Google Scholar 

  24. Dong-Xing Song, Wei-Gang Ma, Xing Zhang, Int. J. Heat Mass Transfer 138, 1228 (2019)

    Article  Google Scholar 

  25. A.R. Challoner, R.W. Powell, Proc. R. Soc. London, Ser. A 238, 90 (1956)

    Article  ADS  Google Scholar 

  26. R.W. Sillars, J. Instit. Electr. Eng. 80, 378 (1937)

    Google Scholar 

  27. C.N. Marin, P.C. Fannin, K. Raj, V. Socoliuc, Magnetohydrodynamics 49, 270 (2013)

    Article  Google Scholar 

  28. L. Gabor, R. Minea, D. Gabor, RO Patent No. 108851 (1994)

  29. Daniela Susan-Resiga, I. Malaescu, Oana Marinica, C.N. Marin, Physica B: Phys. Condens. Matter 587, 412150 (2020)

    Article  Google Scholar 

  30. I. Mihalca, A. Ercuta, C. Ionascu, Sens. Actuators A: Phys. 106, 61 (2003)

    Article  Google Scholar 

  31. R.W. Chantrell, J. Popplewell, S.W. Charles, IEEE Trans. Magn. 14, 975 (1978)

    Article  ADS  Google Scholar 

  32. C.O. Bennett, J.E. Myers, Momentum, Heat and Mass Transfer, 3rd edition (McGraw-Hill, New York, 1982).

  33. S. Kakaç, A. Pramuanjaroenkij, Int. J. Heat Mass Transfer 52, 3187 (2009)

    Article  Google Scholar 

  34. V. Prakash, V.K. Tyagi, A.K. Tyagi, Nano Vision 6, 10 (2016)

    Google Scholar 

  35. M. Krichler, S. Odenbach, J. Magn. & Magn. Mater. 326, 85 (2013)

    Article  ADS  Google Scholar 

  36. M. Ortiz-Salazar, N.W. Pech-May, C. Vales-Pinzon, R. Medina-Esquivel, J.J. Alvarado-Gil, J. Phys. D: Appl. Phys. 51, 075003 (2018)

    Article  ADS  Google Scholar 

  37. J. Molgaard, W.W. Smeltzer, J. Appl. Phys. 42, 3644 (1971)

    Article  ADS  Google Scholar 

  38. J.C. Bacri, D. Salin, J. Phys. (Paris) Lett. 43, L-649 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Malaescu.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, C.N., Malaescu, I. Experimental and theoretical investigations on thermal conductivity of a ferrofluid under the influence of magnetic field. Eur. Phys. J. E 43, 61 (2020). https://doi.org/10.1140/epje/i2020-11986-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11986-3

Keywords

Navigation