Skip to main content
Log in

Formation mechanisms of carbon dimer in excimer laser produced plasma

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Fundamental physical processes involved in carbon excimer laser produced plasma were investigated through high resolution spectroscopic measurements. The spectral emitting features near the target (within 1 mm from it) of different plasma components were recorded at various instants from the laser pulse, with a special emphasis on the carbon dimer known to have a major influence in the synthesis of high-quality carbon-based materials. The dominance of the recombination processes in the dimer formation is deduced from: (i) the existence of multiple time-decay constants evidenced for the spectral lines belonging to various plasma species. These parameters are attributed to the formation of the respective species through different and complex mechanisms, and they are discussed from the perspective of possible deviations from the local thermodynamic equilibrium; (ii) the longer emission time of the carbon dimer compared with singly charged ion or of the neutral. (iii) the increase in time of the vibrational temperature that associated to the carbon molecule.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Thareja, Abhilasha, J. Chem. Phys. 100, 4019 (1994)

    Article  ADS  Google Scholar 

  2. S.S. Harilal, R.C. Issac, C.V. Bindhu, V.P.N. Nampoori, C.P.G. Vallabhan, J. Phys. D: Appl. Phys. 30, 1703 (1997)

    Article  ADS  Google Scholar 

  3. Y.A. Bukovsky, V. Ye, V.P. Charyshkin, I.N.Nikolaev Korlenkov, Spectrochim. Acta Part A 46, 517 (1990)

    Article  ADS  Google Scholar 

  4. H. Yousfi, S. Abdelli-Messaci, O. Ouamerali, A.A. Dekhira, Spectrochim. Acta Part B 142, 97 (2018)

    Article  ADS  Google Scholar 

  5. O. Balki, M.M. Rahman, H.E. Elsayed-Ali, Opt. Commun. 412, 134 (2018)

    Article  ADS  Google Scholar 

  6. A. Alonso-Medina, Spectrosc. Lett. 52, 219 (2019)

    Article  ADS  Google Scholar 

  7. F. Guzmán, M. Favre, H.M. Ruiz, S. Hevia, L.S. Caballero, E.S. Wyndham, H. Bhuyan, M. Flores, S. Mändl, J. Phys. D: Appl. Phys. 46, 215202 (2013)

    Article  ADS  Google Scholar 

  8. C. Ursu, P. Nica, C. Focsa, Appl. Surf. Sci. 456, 717 (2018)

    Article  ADS  Google Scholar 

  9. C. Ursu, P. Nica, B.G. Rusu, C. Focsa, Spectrochim. Acta Part B 163, 105743 (2020)

    Article  Google Scholar 

  10. S. Irle, G. Zheng, M. Elstner, K. Morokuma, Nano Lett. 3, 1657 (2003)

    Article  ADS  Google Scholar 

  11. P.-E. Nica, G.B. Rusu, O.-G. Dragos, C. Ursu, IEEE Trans. Plasma Sci. 42, 2694 (2014)

    Article  ADS  Google Scholar 

  12. Y. Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team , NIST Atomic Spectra Database (Version 3.1.5) (National Institute of Standards and Technology, Gaithersburg, MD, 2008), http://Physics.Nist.Gov/Asd3

  13. M. Murakami, Y.G. Kang, K. Nishihara, S. Fujioka, H. Nishimura, Phys. Plasma 12, 1 (2005)

    Google Scholar 

  14. S. Gurlui, M. Agop, P. Nica, M. Ziskind, C. Focsa, Phys. Rev. E 78, 026405 (2008)

    Article  ADS  Google Scholar 

  15. R.K. Singh, J. Narayan, Phys. Rev. B 41, 8843 (1990)

    Article  ADS  Google Scholar 

  16. J. Cooper, Plasma Spectrosc, Rep. Prog. Phys. 29, 302 (1966)

    Article  Google Scholar 

  17. H.R. Griem, in Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 2005)

  18. A. Alexander, A. Lawrence, F. Routledge, L.A. Kennedy, P. Square, in Plasma Physics and Engineering. 2nd edn. (CRC Press, 2004)

  19. G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, N. Omenetto, Spectrochim. Acta Part B 65, 86 (2010)

    Article  ADS  Google Scholar 

  20. S. Eliezer, K. Mima, in Applications of Laser-Plasma Interactions. 1st edn. (CRC Press, 2009)

  21. P. Nica, M. Agop, S. Gurlui, C. Focsa, EPL 89, 65001 (2010)

    Article  ADS  Google Scholar 

  22. D. Colombant, G.F. Tonon, J. Appl. Phys. 44, 3524 (1973)

    Article  ADS  Google Scholar 

  23. T.J.M. Boyd, J.J. Sanderson, in The Physics of Plasmas (Cambridge University Press, Cambridge, 2003)

  24. Y. Ushirozawa, K. Wagatsuma, Spectrosc. Lett. 38, 539 (2005)

    Article  ADS  Google Scholar 

  25. G. Dinescu, E. Aldea, M.L. De Giorgi, A. Luches, A. Perrone, A. Zocco, Appl. Surf. Sci. 127–129, 697 (1998)

    Article  ADS  Google Scholar 

  26. S.S. Harilal, C.V. Bindhu, R.C. Issac, V.P.N. Nampoori, C.P.G. Vallabhan, J. Appl. Phys. 82, 2140 (1997)

    Article  ADS  Google Scholar 

  27. K.F. Al-Shboul, S.S. Harilal, A. Hassanein, J. Appl. Phys. 113, 163305 (2013)

    Article  ADS  Google Scholar 

  28. Y. Yamagata, A. Sharma, J. Narayan, R.M. Mayo, J.W. Newman, K. Ebihara, J. Appl. Phys. 88, 6861 (2000)

    Article  ADS  Google Scholar 

  29. C.G. Parigger, A.C. Woods, D.M. Surmick, G. Gautam, M.J. Witte, J.O. Hornkohl, Spectrochim. Acta Part B 107, 132 (2015)

    Article  ADS  Google Scholar 

  30. C.G. Parigger, Spectrochim. Acta Part B 79–80, 4 (2013)

    Article  ADS  Google Scholar 

  31. C.G. Parigger, J.O. Hornkohl, A.M. Keszler, L. Nemes, Appl. Opt. 42, 6192 (2003)

    Article  ADS  Google Scholar 

  32. A.M. Keszler, L. Nemes, J. Mol. Struct. 695–696, 211 (2004)

    Article  ADS  Google Scholar 

  33. G. Cristoforetti, E. Tognoni, L.A. Gizzi, Spectrochim. Acta Part B 90, 1 (2013)

    Article  Google Scholar 

  34. R.P. Singh, S.L. Gupta, R.K. Thareja, Spectrochim. Acta Part B 88, 54 (2013)

    Article  ADS  Google Scholar 

  35. J. Dardis, J.T. Costello, Spectrochim. Acta Part B 65, 627 (2010)

    Article  ADS  Google Scholar 

  36. H.R. Griem, in Spectral Line Broadening by Plasmas (Academic Press, New York, London, 1974)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Ursu.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nica, PE., Ursu, C. Formation mechanisms of carbon dimer in excimer laser produced plasma. Eur. Phys. J. D 74, 207 (2020). https://doi.org/10.1140/epjd/e2020-10362-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10362-6

Keywords

Navigation