Skip to main content
Log in

A MALDI-MS sensing chip prepared by non-covalent assembly for quantitation of acid phosphatase

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel sensing chip was designed for MALDI-MS quantitation of acid phosphatase (ACP). The ACP sensing chip was constructed through non-covalent interaction of streptavidin and biotin for the assembly of biotinylated peptide substrate on biotinylated polyethylene-glycol (PEG) modified indium-tin oxide (ITO) slide. In the presence of ACP, the peptide substrate was dephosphorylated under acidic condition to generate a new mass signal. The quantitative assay of ACP was achieved with the mass signal ratio of product to the sum of product and left peptide substrate. Under optimal detection conditions, the ratio was linearly correlated with the concentration of ACP in the range of 0.05–12 g/L with a detection limit (LOD) of 0.04 g/L. The designed ACP sensing chip has been used to analyze ACP in complex clinical samples, which exhibited high selectivity, good repeatability, and admirably anti-interference ability. This work further demonstrates the concept of MS sensing and the application of MALDI-MS in quantitative analysis, and provides a convenient method for the quantitation of proteases in clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leman ES, Getzenberg RH. J Cell Biochem, 2009, 108: 3–9

    Article  CAS  Google Scholar 

  2. Li CY, Yam LT, Lam KW. Offic JHistochem Soc, 1970, 18: 473–481

    CAS  Google Scholar 

  3. Bull H, Murray PG, Thomas D, Fraser AM, Nelson PN. Mol Pathol, 2002, 55: 65–72

    Article  CAS  Google Scholar 

  4. Li L, Ge J, Wu H, Xu QH, Yao SQ. J Am Chem Soc, 2012, 134: 12157–12167

    Article  CAS  Google Scholar 

  5. Kirschenbaum A, Liu XH, Yao S, Leiter A, Levine AC. Ann New York Acad Sci, 2011, 1237: 64–70

    Article  CAS  Google Scholar 

  6. Terpos E, de la Fuente J, Szydlo R, Hatjiharissi E, Viniou N, Meletis J, Yataganas X, Goldman JM, Rahemtulla A. Int J Cancer, 2003, 106: 455–457

    Article  CAS  Google Scholar 

  7. Yam LT. Am J Med, 1974, 56: 604–616

    Article  CAS  Google Scholar 

  8. Makarov DV, Loeb S, Getzenberg RH, Partin AW. Annu Rev Med, 2009, 60: 139–151

    Article  CAS  Google Scholar 

  9. Yamada S, Inaba M, Kurajoh M, Shidara K, Imanishi Y, Ishimura E, Nishizawa Y. Clin Endocrinol, 2008, 69: 189–196

    Article  CAS  Google Scholar 

  10. Lu JC, Fang Chen JC, Xu HR, Huang YF, Lu NQ. Clin Chim Acta, 2007, 375: 76–81

    Article  CAS  Google Scholar 

  11. Yan X, Xia C, Chen B, Li YF, Gao PF, Huang CZ. Anal Chem, 2020, 92: 2130–2135

    Article  CAS  Google Scholar 

  12. Chen C, Liu W, Ni P, Jiang Y, Zhang C, Wang B, Li J, Cao B, Lu Y, Chen W. ACS Appl Mater Interfaces, 2019, 11: 47564–47570

    Article  CAS  Google Scholar 

  13. Huang Y, Feng H, Liu W, Zhou Y, Tang C, Ao H, Zhao M, Chen G, Chen J, Qian Z. Anal Chem, 2016, 88: 11575–11583

    Article  CAS  Google Scholar 

  14. Guo Y, Li X, Dong Y, Wang GL. ACS Sustain Chem Eng, 2019, 7: 7572–7579

    Article  CAS  Google Scholar 

  15. Osawa S, Iida S, Yonemitsu H, Kuroiwa K, Katayama K, Nagasawa T. Clin Chem, 1995, 41: 200–203

    Article  CAS  Google Scholar 

  16. Ma Y, Li Y, Ma K, Wang Z. Sci China Chem, 2018, 61: 643–655

    Article  CAS  Google Scholar 

  17. Lin Z, Zhang X, Liu S, Zheng L, Bu Y, Deng H, Chen R, Peng H, Lin X, Chen W. Anal Chim Acta, 2020, 1105: 162–168

    Article  CAS  Google Scholar 

  18. Yamauchi Y, Ido M, Maeda H. J Chromatogr A, 2005, 1066: 127–132

    Article  CAS  Google Scholar 

  19. Shi F, Zhang Y, Na W, Zhang X, Li Y, Su X. J Mater Chem B, 2016, 4: 3278–3285

    Article  CAS  Google Scholar 

  20. Qian Z, Chai L, Zhou Q, Huang Y, Tang C, Chen J, Feng H. Anal Chem, 2015, 87: 7332–7339

    Article  CAS  Google Scholar 

  21. Qu Z, Na W, Liu X, Liu H, Su X. Anal Chim Acta, 2018, 997: 52–59

    Article  CAS  Google Scholar 

  22. Huang M, Tian J, Zhou C, Bai P, Lu J. Sens Actuat B-Chem, 2020, 307: 127654

    Article  Google Scholar 

  23. Fredj Z, Ali MB, Abbas MN, Dempsey E. Anal Chim Acta, 2019, 1057: 98–105

    CAS  PubMed  Google Scholar 

  24. Zhang J, Yuan Y, Han Z, Li Y, van Zijl PCM, Yang X, Bulte JWM, Liu G. Biosens Bioelectron, 2019, 141: 111442

    Article  CAS  Google Scholar 

  25. Xu Y, Li B, Xiao L, Ouyang J, Sun S, Pang Y. Chem Commun, 2014, 50: 8677–8680

    Article  CAS  Google Scholar 

  26. Xie Y, Tan Y, Liu R, Zhao R, Tan C, Jiang Y. ACS Appl Mater Interfaces, 2012, 4: 3784–3787

    Article  CAS  Google Scholar 

  27. Liu Z, Lin Z, Liu L, Su X. Anal Chim Acta, 2015, 876: 83–90

    Article  CAS  Google Scholar 

  28. Hu J, Liu F, Ju H. Anal Chem, 2015, 87: 4409–4414

    Article  CAS  Google Scholar 

  29. Wang SS, Wang YJ, Zhang J, Xiang J, Sun TQ, Guo YL. Sci China Chem, 2018, 61: 871–878

    Article  CAS  Google Scholar 

  30. Percy AJ, Parker CE, Borchers CH. Bioanalysis, 2013, 5: 2837–2856

    Article  CAS  Google Scholar 

  31. Joo J, Lee B, Lee T, Liu KH. Rapid Commun Mass Spectrom, 2014, 28: 2405–2414

    Article  CAS  Google Scholar 

  32. Chang SH, Han JL, Tseng SY, Lee HY, Lin CW, Lin YC, Jeng WY, Wang AHJ, Wu CY, Wong CH. J Am Chem Soc, 2010, 132: 13371–13380

    Article  CAS  Google Scholar 

  33. Sanchez-Ruiz A, Serna S, Ruiz N, Martin-Lomas M, Reichardt NC. Angew Chem Int Ed, 2011, 50: 1801–1804

    Article  CAS  Google Scholar 

  34. Ma R, Hu J, Cai Z, Ju H. Anal Chem, 2014, 86: 8275–8280

    Article  CAS  Google Scholar 

  35. Hu J, Liu F, Ju H. Angew Chem Int Ed, 2016, 55: 6667–6670

    Article  CAS  Google Scholar 

  36. Feng N, Hu J, Ma Q, Ju H. Biosens Bioelectron, 2020, 157: 112159

    Article  CAS  Google Scholar 

  37. Beloqui A, Calvo J, Serna S, Yan S, Wilson IBH, Martin-Lomas M, Reichardt NC. Angew Chem Int Ed, 2013, 52: 7477–7481

    Article  CAS  Google Scholar 

  38. Ban L, Pettit N, Li L, Stuparu AD, Cai L, Chen W, Guan W, Han W, Wang PG, Mrksich M. Nat Chem Biol, 2012, 8: 769–773

    Article  CAS  Google Scholar 

  39. Su J, Rajapaksha TW, Peter ME, Mrksich M. Anal Chem, 2006, 78: 4945–4951

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21635005, 21827812, 21890741, 21974063), the National Key Research and Development Program of China (2018YFC1004704) and the Fundamental Research Funds for the Central Universities (14380200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supplementary Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Chen, Y., Feng, N. et al. A MALDI-MS sensing chip prepared by non-covalent assembly for quantitation of acid phosphatase. Sci. China Chem. 64, 151–156 (2021). https://doi.org/10.1007/s11426-020-9850-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9850-3

Navigation