Skip to main content
Log in

Mechanical properties and reinforcement effect of jointed rock mass with pre-stressed bolt

预应力锚杆加固裂隙岩体力学性质及锚固效果研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Pre-stressed bolt anchorage is the key technology for jointed rock masses in rock tunnelling, slope treatment and mining engineering. To investigate the mechanical properties and reinforcement effect of jointed rock masses with pre-stressed bolts, in this study, uniaxial compression tests were conducted on specimens with different anchoring types and flaw inclination angles. ABAQUS software was used to verify and supplement the laboratory tests. The laws of the uniaxial compressive strength (UCS) obtained from the numerical simulations and laboratory tests were consistent. The results showed that under the same flaw angle, both the UCS and elastic modulus of the bolted specimens were improved compared with those of the specimens without bolts and the improvements increased with an increase in the bolt pre-stress. Under the same anchoring type, the UCS and elastic modulus of the jointed specimens increased with an increase in the flaw angle. The pre-stressed bolt could not only restrain the slip of the specimens along the flaw surface but also change the propagation mode of the secondary cracks and limit the initiation of cracks. In addition, the plot contours of the maximum principal strain and the Tresca stress of the numerical models were influenced by the anchoring type, flaw angle, anchoring angle and bolt position.

摘要

在岩质隧道、 边坡治理及矿山工程中, 预应力锚杆是加固节理岩体的关键技术. 为研究预应力锚杆加固裂隙岩体的力学性质和锚固效果, 本文对不同锚固方式和裂隙倾角的试样开展单轴压缩试验, 并采用 ABAQUS 软件对室内试验进行验证和补充, 发现数值模拟和室内试验得到的单轴压缩强度规律一致. 结果表明: 当裂隙倾角相同时, 相比于无锚试样, 加锚试样的单轴压缩强度和弹性模量均有所提高, 且提高程度随着锚杆预应力的增加而逐渐增加; 在相同的锚固方式下, 裂隙试样的单轴压缩强度和弹性模量随着裂隙倾角的增加而提高. 预应力锚杆不仅可以限制试样沿裂隙面发生整体滑动, 而且能够改变次生裂纹的扩展模式并限制裂纹的形成. 此外, 锚固方式、 裂隙倾角、 锚固角度和锚固位置对数值模型的最大主应变云图和 Tresca 应力云图有着不同程度的影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

The width of the specimen along the direction of the bolt length

c :

The cohesion of the material

c 0 :

The initial cohesion yield stress

d x :

The lateral displacement along the direction of the bolt lengthmeasured by the sensor

d z :

The axial displacement measured by the sensor

e :

A parameter about the deviatoric eccentricity

E :

The elastic modulus

h :

The height of the specimen

p :

The equivalent pressure stress

q :

The Mises equivalent stress

UCS:

Uniaxial compressive strength

σ b :

The pre-stress of the bolt

σ t :

The tension cutoff value

ε v :

The volume strain

ε x :

The lateral strain along the direction of the bolt length

ε xy :

The lateral strain along the direction of the pre-flaw length

ε z :

The axial strain

φ :

The friction angle of the material

Θ :

The deviatoric polar angle

Ψ :

The dilation angle

ε :

A parameter about the meridional eccentricity

θ :

The expansion coefficient

ΔT :

The reduction value of the temperature

References

  1. ZHOU Jun-hua, YANG Kun, FANG Kai, ZHAO Tong-bin, QIU Dong-wei. Effect of fissure on mechanical and damage evolution characteristics of sandstone containing hole defect [J]. Journal of Central South University (Science and Technology), 2019, 50(4): 968–975. DOI: https://doi.org/10.11817/j.issn.1672-7207.2019.04.026. (in Chinese)

    Google Scholar 

  2. YANG Sheng-qi, HUANG Yan-hua, TIAN Wen-ling, ZHU Jian-bo. An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxialcompression [J]. Eng Geol, 2017, 217: 35–48. DOI: https://doi.org/10.1016/j.enggeo.2016.12.004.

    Article  Google Scholar 

  3. YANG Wen-dong, Li Gui-zhi, RANJITH PG, FANG Lin-dong. An experimental study of mechanical behavior of brittle rock-like specimens with multi-non-persistent joints under uniaxial compression and damage analysis [J]. Int J Damage Mech, 2019, 28(10): 1490–1522. DOI: https://doi.org/10.1177/1056789519832651.

    Article  Google Scholar 

  4. YANG Xu-xu, JING Hong-wen, TANG Chun-an, YANG Sheng-qi. Effect of parallel joint interaction on mechanical behavior of jointed rock mass models [J]. Int J Rock Mech Min Sci, 2017, 92: 40–53. DOI: https://doi.org/10.1016/j.ijrmms.2016.12.010.

    Article  Google Scholar 

  5. WU Fa-quan, DENG Yi, WU Jie, LI Bo, SHA Peng, GUAN Sheng-gong, ZHANG Kai, HE Ke-qiang, LIU Han-dong, QIU Shu-hao. Stress-strain relationship in elastic stage of fractured rock mass [J]. Eng Geol, 2020, 268: 1–8. DOI: https://doi.org/10.1016/j.enggeo.2020.105498.

    Article  Google Scholar 

  6. HUANG Chen-chen, YANG Wen-dong, DUAN Kang, FANG Lin-dong, WANG LiNG, BO Chun-jie. Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression [J]. Constr Build Mater, 2019, 220: 426–443. DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.159.

    Article  Google Scholar 

  7. ZHOU T, ZHU J B, JU Y, XIE H P. Volumetric fracturing behavior of 3D printed artificial rocks containing single and double 3D internal flaws under static uniaxial compression [J]. Eng Fract Mech, 2019, 205: 190–204. DOI: https://doi.org/10.1016/j.engfracmech.2018.11.030.

    Article  Google Scholar 

  8. YANG Wen-dong, ZHANG Qian-bing, RANJITH P G, YU Ran-gang, LUO Guang-yu, HUANG Chen-chen, WANG Gang. A damage mechanical model applied to analysis of mechanical properties of jointed rock masses [J]. Tuun Undergr Space Tech, 2019, 84: 113–128. DOI: https://doi.org/10.1016/j.tust.2018.11.004.

    Article  Google Scholar 

  9. CUI Guo-jian, ZHANG Chuan-qing, CHEN Jian-lin, YANG Fan-jie, ZHOU Hui, LU Jing-jing. Effect of bolt inclination angle on shear behavior of bolted joints under CNL and CNS conditions [J]. Journal of Central South University, 2020, 27: 937–950. DOI: https://doi.org/10.1007/s11771-020-4342-x.

    Article  Google Scholar 

  10. WANG Q, QIN Q, JIANG B, YU H C, PAN R, LI S C. Study and engineering application on the bolt-grouting reinforcement effect in underground engineering with fractured surrounding rock [J]. Tunn Undergr Space Technol, 2019, 84: 237–247. DOI: https://doi.org/10.1016/j.tust.2018.11.028.

    Article  Google Scholar 

  11. ZHANG Bo, LI Shu-cai, XIA Kai-wen, YANG Xue-ying, ZHANG Dun-fu, WANG Shu-gang, ZHU Jian-bo. Reinforcement of rock mass with cross-flaws using rock bolt [J]. Tunn Undergr Space Technol, 2016, 51: 346–353. DOI: https://doi.org/10.1016/j.tust.2015.10.007.

    Article  Google Scholar 

  12. SRIVASTAVA L P, SINGH M. Empirical estimation of strength of jointed rocks traversed by rock bolts based on experimental observation [J]. Eng Geol, 2015, 197: 103–111. DOI: https://doi.org/10.1016/j.enggeo.2015.08.004.

    Article  Google Scholar 

  13. LI C C. Principles of rockbolting design [J]. J Rock Mech Geotech Eng, 2017. DOI: https://doi.org/10.1016/j.jrmge.2017.04.002.

  14. MOHAMMADI M, HOSSAINI M F, BAGLOO H. Rock bolt supporting factor: Rock bolting capability of rock mass [J]. B Eng Geol Environ, 2017, 76(1): 231–239. DOI: https://doi.org/10.1007/s10064-015-0785-y.

    Article  Google Scholar 

  15. ZOU Jin-feng, XIA Zhang-qi, DAN Han-cheng. Theoretical solutions for displacement and stress of a circular opening reinforced by grouted rock bolt [J]. Geomech Eng, 2016, 11(3): 439–455. DOI: https://doi.org/10.12989/gae.2016.11.3.439.

    Article  Google Scholar 

  16. ZHU Wen-xin, JING Hong-wen, YANG Li-jun, PAN Bing, SU Hai-jian. Strength and deformation behaviors of bedded rock mass under bolt reinforcement [J]. Int J Min Sci Technol, 2018, 28: 593–599. DOI: https://doi.org/10.1016/j.ijmst.2018.03.006.

    Article  Google Scholar 

  17. DANZIGER F A B, DANZIGER B R, PACHECO M P. The simultaneous use of piles and prestressed anchors in foundation design [J]. Eng Geol, 2006, 87(3): 163–177.

    Article  Google Scholar 

  18. KUMAR R, SHARMA KG, VARADARAJAN A. Post-peak response of some metamorphic rocks of India under high confining pressures [J]. Int J Rock Mech Min Sci, 2010, 47(8): 1357–1362. DOI: https://doi.org/10.1016/j.ijrmms.2010.08.016.

    Article  Google Scholar 

  19. CHUNG K. Prediction of pre- and post-peak behavior of concrete-filled circular steel tube columns under cyclic loads using fiber element method [J]. Thin Wall Struct, 2010, 48(2): 169–178. DOI: https://doi.org/10.1016/j.tws.2007.06.003.

    Article  MathSciNet  Google Scholar 

  20. CHENG Liang-kui, ZHANG Pei-wen, WANG Fan. Several mechanical concepts for anchored structures in rock and soil [J]. Chin J Rock Mech Eng, 2015, 34(4): 668–682. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.04.000. (in Chinese)

    Google Scholar 

  21. BJURSTROM S. Shear strength of hard rock joints reinforced by grouted un-tensioned bolts [C]// Proceedings of the 3rd International Congress on Rock Mechanics. Denver, 1974, 2: 1194–1199.

  22. DIGHT P M. Improvements to the stability of rock walls in open mines [D]. Australia: Monash University, 1982.

    Google Scholar 

  23. SPANG K, EGGER P. Action of fully-grouted bolt in jointed rock and factors of influence [J]. Rock Mech Rock Eng, 1990, 23(3): 201–229. DOI: https://doi.org/10.1007/bf01022954.

    Article  Google Scholar 

  24. BEZUIJEN A. Compensation grouting in sand: Experiments, field experiences and mechanisms [D]. Delft: Delft University of Technology, 2010.

    Google Scholar 

  25. LITTLEJOHN G S, BRUCE D A. Rock anchors: state-of-the-art part I, design, ground engineering [M]. Essex, England: Foundation Publications Ltd., 1975: 163–175.

    Google Scholar 

  26. YOSHINAKA R, SKAGUCHI S, SHIMIZU T. Experimental study on the rock bolt reinforcement in discontinuous rock [J]. Electr Commun JPN, 1987, 133(113): 117–127. DOI: https://doi.org/10.1002/ecj.11645.

    Google Scholar 

  27. BARTON N, BAKHTAR K. Bolt design based on shear strength [C]// Proceedings of the International Symposium on Rock Bolting. Stockholm, Balkema, 1983: 367–376.

  28. EGGER P, SPANG K. Stability investigations for ground improvement by rock bolt at a large dam [C]// Proceedings of VI International Conference ISRM. Montreal, Canada, 1987: 349–354.

  29. GRASSELLI G. 3D behaviour of bolted rock joints: Experimental and numerical study [J]. Int J Rock Mech Min Sci, 2005, 42(11): 13–24. DOI: https://doi.org/10.1016/j.ijrmms.2004.06.003.

    Article  Google Scholar 

  30. JALALIFAR H, AZIZ N. Experimental and 3D numerical simulation of reinforced shear joints [J]. Rock Mech Rock Eng, 2010, 43(1): 95–103. DOI: https://doi.org/10.1007/s00603-009-0031-7.

    Article  Google Scholar 

  31. LI Xu-wei, AZIZ N, MIRZAGHORBANALI A, NEMCIK J. Behavior of fiber glass bolts, rock bolts and cable bolts in shear [J]. Rock Mech Rock Eng, 2016, 49: 2723–2735. DOI: https://doi.org/10.1007/s00603-015-0907-7.

    Article  Google Scholar 

  32. ZHOU Hui, XU Rong-chao, ZHANG Chuan-qing, SHEN Zheng, MENG Fan-zhen, LIU Hai-tao. Experimental study of crack prevention effect of pre-stressed bolt anchoring [J]. Chin J Rock Mech Eng, 2015, 34(10): 2027–2037. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.0983. (in Chinese)

    Google Scholar 

  33. WANG Chuan-bing, LEI Guang-feng. Experimental study on bolt anchorage affected to mechanics features of fractured rock mass [J]. Mine Construction Technology, 2017, 38(2): 23–29. (in Chinese)

    Google Scholar 

  34. MCHUGH E L, SIGNER S P. Roof bolt response to shear stress: Laboratory analysis [C]// Proceedings of 18th International Conference on Ground Control in Mining. Morgantown, USA, 1999: 232–238.

  35. MAGHOUS S, BERNAUD D, COUTO E. Three-dimensional numerical simulation of rock deformation in bolt-supported tunnels: a homogenization approach [J]. Tunn Undergr Sp Tech, 2012, 31: 68–79. DOI: https://doi.org/10.1016/j.tust.2012.04.008.

    Article  Google Scholar 

  36. DEB D, DAS K C. Modelling of fully grouted rock bolt based on enriched finite element method [J]. Int J Rock Mech Min Sci, 2011, 48(2): 283–293. DOI: https://doi.org/10.1016/j.ijrmms.2010.11.015.

    Article  Google Scholar 

  37. SONG Hong-wei, DUAN Yan-yan, YANG Jing. Numerical simulation on bolted rock joint shearing performance [J]. Mining Science and Technology, 2010, 20(3): 460–465. DOI: CNKI:SUN:ZHKD.0.2010-03-023.

    Google Scholar 

  38. NEMCIK J, MA Shu-qi, AZIZ N, REN Ting, GENG Xue-yu. Numerical modelling of failure propagation in fully grouted rock bolts subjected to tensile load [J]. Int J Rock Mech Min Sci, 2014, 71: 293–300. DOI: https://doi.org/10.1016/j.ijrmms.2014.07.007.

    Article  Google Scholar 

  39. MA Shu-qi, NEMCIK J, AZIZ N. Simulation of fully grouted rockbolts in underground roadways using FLAC2D [J]. Can Geotech J, 2014, 51(8): 911–920. DOI: https://doi.org/10.1139/cgj-2013-0338.

    Article  Google Scholar 

  40. TAN Cheng-hua. Difference solution of passive bolts reinforcement around a circular opening in elastoplastic rock mass [J]. Int J Rock Mech Min Sci, 2016, 81: 28–38. DOI: https://doi.org/10.1016/j.ijrmms.2015.11.001.

    Article  Google Scholar 

  41. NIE W, ZHAO ZY, NING YJ, SUN JP. Development of rock bolt elements in two-dimensional discontinuous deformation analysis [J]. Rock Mech Rock Eng, 2014, 47: 2157–2170. DOI: https://doi.org/10.1007/s00603-013-0525-1.

    Article  Google Scholar 

  42. LI Yong, ZHOU Hao, ZHANG Lei, ZHU Wei-shen, LI Shu-cai, LIU Jian. Experimental and numerical investigations on mechanical property and reinforcement effect of bolted jointed rock mass [J]. Constr Build Mater, 2016, 126: 843–856. DOI: https://doi.org/10.1016/j.conbuildmat.2016.09.100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by YANG Wen-dong and LUO Guang-yu. BO Chun-jie and WANG Ling analyzed the calculated results. LÜ Xian-xian, WANG Ying-nan and WANG Xu-peng carried out the experiments and analyzed the measured data. The initial draft of the manuscript was written by YANG Wen-dong and LUO Guang-yu.

Corresponding author

Correspondence to Wen-dong Yang  (杨文东).

Ethics declarations

YANG Wen-dong, LUO Guang-yu, BO Chun-jie, WANG Ling, LÜ Xian-xian, WANG Ying-nan and WANG Xu-peng declare that they have no conflict of interest.

Additional information

Foundation item: Project(51979281) supported by the National Natural Science Foundation of China; Project(ZR2018MEE050) supported by the Natural Science Foundation of Shandong Province, China; Project(18CX02079A) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Wd., Luo, Gy., Bo, Cj. et al. Mechanical properties and reinforcement effect of jointed rock mass with pre-stressed bolt. J. Cent. South Univ. 27, 3513–3530 (2020). https://doi.org/10.1007/s11771-020-4469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4469-9

Key words

关键词

Navigation