Skip to main content

Advertisement

Log in

Experimental studies on the heat transfer characteristics of alumina/water nanofluid inside a helical coil tube

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Laminar convective heat transfer and pressure drop characteristics of Al2O3-water nanofluid were experimentally investigated inside a horizontal Helical-Coil Tube (HCT) under constant heat flux boundary conditions for Dean numbers between 400 and 1600. The experiments have been performed using Al2O3-water nanofluid of three mass concentrations and heat fluxes at different flow rates. Thermal conductivity and viscosity of the fluids are measured experimentally, and a proper agreement was observed with the new model predictions for thermo-physical properties of nanofluids. Based on the experimental results, the thermal conductivity and viscosity of Al2O3-water nanofluid were almost 2.12% and 3.1% higher than water in 1 wt% concentration. According to the observations, the heat transfer coefficients in the fully developed region increases by 6.4%, 19%, and 23.7% under 2283, 3774, and 4975 W/m2 heat fluxes, respectively, at 1 wt% concentration of Al2O3-water nanofluid with respect to pure water. Besides, it has been noticed that pressure drop through the helical coil is increased with adding nanoparticles, enhancement of heat flux, and De number. Finally, based on the thermal performance factor, it has been concluded that using nanofluids in the helical coil is a feasible method for improving energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a p :

Specific Area of Particle, (gr/m2)

AC :

Alternating current

Ag :

Silver

Al :

Aluminium

Al 2 O 3 :

Aluminium Oxide

C :

Correction Factor

C p :

Specific heat at constant pressure, (J/kg. K)

C pp :

Specific heat of Particle, (J/kg.K)

CMC :

Carboxymethyl Cellulose

Cu :

Copper

CuO:

Copper Oxide

D :

Coil diameter, m

d :

Coil inside diameter, m

d p :

Diameter of Nanoparticles, m

De :

Dean number

f :

Friction factor

Fe 2 O 3 :

Iron(III) oxide

H :

Coil height, m

h :

Heat transfer coefficient

h :

Nano-layer Thickness

HCT :

Helical-Coil Tube

K:

Thermal conductivity, W/m2K

K:

Kelvin

Kp :

Thermal conductivity of Particles, W/m2K

l :

Coil length, m

\( \dot{m} \) :

Mass flow rate, kg/s

mm :

Millimetre

n :

Shape Factor

nm :

Nanometre

Nu :

Nusselt number

P :

Pressure, Pa

P :

Perimeter, m

PANI :

Polyaniline

PT :

Pitch

q":

Heat flux, W/m2

R :

Dependent variable

R c :

Radius of coil, m

r :

Radius of tube, m

r p :

Radius of the Nanoparticles

Re:

Reynolds number

SDBS :

Sodium dodecyl benzene sulfonate

SiO 2 :

Silicon dioxide

T :

Temperature, K

U :

Average velocity, m/s

V B :

Explainer of Brownian Velocity

X:

Independent Variable

β :

Ratio of the Nanolayer Thickness

η :

Thermal performance factor

ρ :

Density, (kg/m3)

ρ p :

Particle Density, (kg/m3)

μ :

Viscosity

φ :

Volume fraction

φ m :

Mass percent

ψ :

Sphericity

δ:

Distance Between Two Particles

a :

Ambient

B :

Brownian

app :

Apparant

bf :

Base fluid

c :

Coil

eff :

Effective

exp :

Experimental

f :

Fluid

i :

Inlet

j :

Dependent variable index

m :

Distance of x from the inlet port

nf :

Nanofluid

o :

Outlet

p :

Particle

np :

Nanoparticle

s :

Straight tube

th :

Theoretical

References

  1. Jayakumar JS, Mahajania SM, Mandal JC, Vijayan PK, Bhoia R (2008) Experimental and CFD estimation of heat transfer in helically coiled heat exchangers. Int J Chemical Engineering Research and Design 86:221–232. https://doi.org/10.1016/j.cherd.2007.10.021

    Article  Google Scholar 

  2. Wang Y, Alvarado JL, Terrell W Jr (2018) Thermal and flow characteristics of helical coils with reversed loops. Int J Heat Mass Transf 126:670–680. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.110

    Article  Google Scholar 

  3. Usman M, Ali SHM (2019) Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sust Energ Rev 103:556–592. https://doi.org/10.1016/j.rser.2018.12.057

    Article  Google Scholar 

  4. Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64. https://doi.org/10.1016/S0142-727X(99)00067-3

    Article  Google Scholar 

  5. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155. https://doi.org/10.1115/1.1532008

    Article  Google Scholar 

  6. Mirfendereski S, Abbassi A, Saffar-avval M (2015) Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall heat flux. Adv Powder Technol 26:1483–1494. https://doi.org/10.1016/j.apt.2015.08.006

    Article  Google Scholar 

  7. Jamal-Abad MT, Zamzamian A, Dehghan M (2013) Experimental studies on the heat transfer and pressure drop characteristics of cu–water and Al–water nanofluids in a spiral coil. Exp Thermal Fluid Sci 47:206–212. https://doi.org/10.1016/j.expthermflusci.2013.02.001

    Article  Google Scholar 

  8. Bhanvasea BA, Sayankara SD, Kaprea A, Fulea PJ, Sonawane SH (2018) Experimental investigation on intensified convective heat transfer coefficient of water based PANI nanofluid in vertical helical coiled heat exchanger. Appl Therm Eng 128:134–140. https://doi.org/10.1016/j.applthermaleng.2017.09.009

    Article  Google Scholar 

  9. Mokhtari Ardekania A, Kalantara V, Heyhat MM (2019) Experimental study on heat transfer enhancement of nanofluid flow through helical tubes. Adv Powder Technol 30(9):1815–1822. https://doi.org/10.1016/j.apt.2019.05.026

    Article  Google Scholar 

  10. Naik BAK, Vinod AV (2018) Heat transfer enhancement using non-Newtonian nanofluids in a shell and helical coil heat exchanger. Exp Thermal Fluid Sci 90:132–142. https://doi.org/10.1016/j.expthermflusci.2017.09.013

    Article  Google Scholar 

  11. Khoshvaght-Aliabadi M, Hormozi F, Zamzamian A (2014) Experimental analysis of thermal–hydraulic performance of copper–water nanofluid flow in different plate-fin channels. Exp Thermal Fluid Sci 52:248–258. https://doi.org/10.1016/j.expthermflusci.2013.09.018

    Article  Google Scholar 

  12. Devendiran DK, Amirtham VA (2016) A review on preparation, characterization, properties and applications of nanofluids. Renew Sust Energ Rev 60:21–40. https://doi.org/10.1016/j.rser.2016.01.055

    Article  Google Scholar 

  13. Zamzamian A, Oskouie SN, Doosthoseini A, Joneidi A, Pazouki M (2011) Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Exp Thermal Fluid Sci 35:495–502. https://doi.org/10.1016/j.expthermflusci.2010.11.013

    Article  Google Scholar 

  14. Javaniyan Jouybari H, Saedodin S, Zamzamian A, Eshagh Nimvari M, Wongwises S (2017) Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renew Energy 114(B):1407–1418. https://doi.org/10.1016/j.renene.2017.07.008

    Article  Google Scholar 

  15. Muller RH (1996) Zetapotential und Partikelladung in der Laborpraxis, first edn. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  16. Pak BC, Cho Y (1998) Hydrodynamic and heat transfer study of dispersed fluids with sub-micron metallic oxide particle. Exp Heat Transfer 11:151–170. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

  17. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701. https://doi.org/10.1016/s0017-9310(99)00369-5

    Article  MATH  Google Scholar 

  18. Khoshvaght-Aliabadi M, Hormozi F, Zamzamian A (2015) Experimental study of Cu–water nanofluid forced convective flow inside a louvered channel. Heat Mass Transf 51(3):423–432. https://doi.org/10.1007/s00231-014-1422-1

    Article  Google Scholar 

  19. Dravid AN, Smith KA, Merril EW, Brian PLT (1971) Effect of secondary fluid motion on laminar flow heat transfer in helically coiled tubes. AICHE J 17(5):1114–1122. https://doi.org/10.1002/aic.690170517

    Article  Google Scholar 

  20. Janssen LAM, Hoogendoorn CJ (1978) Laminar convective heat transfer in helical coiled tubes. International Journal of Heat and Mass 21:1197–1206. https://doi.org/10.1016/0017-9310(78)90138-2

    Article  Google Scholar 

  21. Kahani M, Zeinali Heris S, Mousavi SM (2013) Comparative study between metal oxide nano-powders on thermal characteristics of nanofluid flow through helical coils. Powder Technol 246:82–92. https://doi.org/10.1016/j.powtec.2013.05.010

    Article  Google Scholar 

  22. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191. https://doi.org/10.1021/i160003a005

    Article  Google Scholar 

  23. Yu W, Choi SUS, Drobnik J (2003) The role of interfacial layers in the enhanced thermal conductivity of Nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171. https://doi.org/10.1023/a:1024438603801

    Article  Google Scholar 

  24. Einstein A (1956) Investigation on the theory of the Brownian movement. Dover Publications, Inc, New York

    MATH  Google Scholar 

  25. Masoumi N, Sohrabi N, Behzadmehr A (2009) A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys 42:055501. https://doi.org/10.1088/0022-3727/42/5/055501

    Article  Google Scholar 

  26. Hashemi SM, Akhavan-Behabadi MA (2012) An empirical study on heat transfer and pressure drop characteristics of CuO–base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux. International Communications in Heat and Mass Transfer 39:144–151. https://doi.org/10.1016/j.icheatmasstransfer.2011.09.002

    Article  Google Scholar 

  27. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf 47:5181–5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

    Article  Google Scholar 

  28. Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). Int J Heat Mass Transf 49:240–250. https://doi.org/10.2514/1.9934

    Article  Google Scholar 

  29. Mahmoudi M, Tavakoli MR, Mirsoleimani MA, Gholami A, Salimpour MR (2017) Experimental and numerical investigation on forced convection heat transfer and pressure drop in helically coiled pipes using TiO/water nanofluid. Int J Refrig 74:627–643. https://doi.org/10.1016/j.ijrefrig.2016.11.014

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Iran National Science Foundation: INSF for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohsen Mansouri or Seyed Amir Hossein Zamzamian.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, M., Zamzamian, S.A.H. Experimental studies on the heat transfer characteristics of alumina/water nanofluid inside a helical coil tube. Heat Mass Transfer 57, 551–564 (2021). https://doi.org/10.1007/s00231-020-02976-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02976-w

Navigation