Skip to main content
Log in

Ground state cooling of magnomechanical resonator in \({\cal P}{\cal T}\)-symmetric cavity magnomechanical system at room temperature

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We propose to realize the ground state cooling of magnomechanical resonator in a parity-time (\({\cal P}{\cal T}\))-symmetric cavity magnomechanical system composed of a loss ferromagnetic sphere and a gain microwave cavity. In the scheme, the magnomechanical resonator can be cooled close to its ground state via the magnomechanical interaction, and it is found that the cooling effect in \({\cal P}{\cal T}\)-symmetric system is much higher than that in non-\({\cal P}{\cal T}\)-symmetric system. Resorting to the magnetic force noise spectrum, we investigate the final mean phonon number with experimentally feasible parameters and find surprisingly that the ground state cooling of magnomechanical resonator can be directly achieved at room temperature. Furthermore, we also illustrate that the ground state cooling can be flexibly controlled via the external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Vacuum Rabi splitting in semiconductors, Nat. Phys. 2(2), 81 (2006)

    Google Scholar 

  2. P. Pei, F. Y. Zhang, C. Li, and H. S. Song, All-optical quantum computing with a hybrid solid-state processing unit, Phys. Rev. A 84(4), 042339 (2011)

    ADS  Google Scholar 

  3. O. O. Soykal and M. E. Flatté, Size dependence of strong coupling between nanomagnets and photonic cavities, Phys. Rev. B 82(10), 104413 (2010)

    ADS  Google Scholar 

  4. A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, Cavity optomagnonics with spin-orbit coupled photons, Phys. Rev. Lett. 116(22), 223601 (2016)

    ADS  Google Scholar 

  5. X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Strongly coupled magnons and cavity microwave photons, Phys. Rev. Lett. 113(15), 156401 (2014)

    ADS  Google Scholar 

  6. J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, Triple-resonant Brillouin light scattering in magneto-optical cavities, Phys. Rev. Lett. 117(13), 133602 (2016)

    ADS  Google Scholar 

  7. A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, and K. Usami, Brillouin light scattering by magnetic quasivortices in cavity optomagnonics, Phys. Rev. Lett. 120(13), 133602 (2018)

    ADS  Google Scholar 

  8. S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Optical cooling of magnons, Phys. Rev. Lett. 121(8), 087205 (2018)

    ADS  Google Scholar 

  9. O. O. Soykal and M. E. Flatté, Strong field interactions between a nanomagnet and a photonic cavity, Phys. Rev. Lett. 104(7), 077202 (2010)

    ADS  Google Scholar 

  10. Y. P. Wang, G. Q. Zhang, D. Zhang, X. Q. Luo, W. Xiong, S. P. Wang, T. F. Li, C. M. Hu, and J. Q. You, Magnon Kerr effect in a strongly coupled cavity-magnon system, Phys. Rev. B 94(22), 224410 (2016)

    ADS  Google Scholar 

  11. H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids, Phys. Rev. Lett. 111(12), 127003 (2013)

    ADS  Google Scholar 

  12. J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere, Phys. Rev. B 93(14), 144420 (2016)

    ADS  Google Scholar 

  13. L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, Spin pumping in electrodynamically coupled magnon-photon systems, Phys. Rev. Lett. 114(22), 227201 (2015)

    ADS  Google Scholar 

  14. Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Phys. Rev. Lett. 113(8), 083603 (2014)

    ADS  Google Scholar 

  15. C. Kittel, On the theory of ferromagnetic resonance absorption, Phys. Rev. 73(2), 155 (1948)

    ADS  Google Scholar 

  16. C. Kittel, Interaction of spin waves and ultrasonic waves in ferromagnetic crystals, Phys. Rev. 110(4), 836 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  17. D. Zhang, X. M. Wang, T. F. Li, X.Q. Luo, W. Wu, F. Nori, and J. Q. You, Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere, npj Quantum Inf. 1, 15014 (2015)

    ADS  Google Scholar 

  18. Y. P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q. You, Bistability of cavity magnon polaritons, Phys. Rev. Lett. 120(5), 057202 (2018)

    ADS  Google Scholar 

  19. G. Q. Zhang and J. Q. You, Higher-order exceptional point in a cavity magnonics system, Phys. Rev. B 99(5), 054404 (2019)

    ADS  Google Scholar 

  20. B. Wang, Z. X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system, Opt. Express 26(16), 20248 (2018)

    ADS  Google Scholar 

  21. C. Kong, B. Wang, Z. X. Liu, H. Xiong, and Y. Wu, Magnetically controllable slow light based on magnetostrictive forces, Opt. Express 27(4), 5544 (2019)

    ADS  Google Scholar 

  22. M. Goryachev, S. Watt, J. Bourhill, M. Kostylev, and M. E. Tobar, Cavity magnon polaritons with lithium ferrite and three-dimensional microwave resonators at millikelvin temperatures, Phys. Rev. B 97(15), 155129 (2018)

    ADS  Google Scholar 

  23. M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, High-cooperativity cavity QED with magnons at microwave frequencies, Phys. Rev. Appl. 2(5), 054002 (2014)

    ADS  Google Scholar 

  24. S. N. Huai, Y. L. Liu, J. Zhang, L. Yang, and Y. X. Liu, Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system, Phys. Rev. A 99(4), 043803 (2019)

    ADS  Google Scholar 

  25. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431(7005), 162 (2004)

    ADS  Google Scholar 

  26. C. Roy, and S. Hughes, Phonon-dressed mollow triplet in the regime of cavity quantum electrodynamics: Excitation-induced dephasing and nonperturbative cavity feeding effects, Phys. Rev. Lett. 106(24), 247403 (2011)

    ADS  Google Scholar 

  27. E. H. Turner, Interaction of phonons and spin waves in yttrium iron garnet, Phys. Rev. Lett. 5(3), 100 (1960)

    ADS  Google Scholar 

  28. Y. L. Liu and Y. X. Liu, Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity, Phys. Rev. A 96(2), 023812 (2017)

    ADS  Google Scholar 

  29. Y. Xing, L. Qi, J. Cao, D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, Spontaneous PT-symmetry breaking in non-Hermitian coupled-cavity array, Phys. Rev. A 96(4), 043810 (2017)

    ADS  Google Scholar 

  30. Y. Y. Fu, Y. Fei, D. X. Dong, and Y. W. Liu, Photonic spin Hall effect in PT symmetric metamaterials, Front. Phys. 14(6), 62601 (2019)

    ADS  Google Scholar 

  31. Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)

    ADS  Google Scholar 

  32. H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, PT-symmetric phonon laser, Phys. Rev. Lett. 113(5), 053604 (2014)

    ADS  Google Scholar 

  33. L. Wang, Z. X. Yang, Y. M. Liu, C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, Magnon blockade in a \({\cal P}{\cal T}\)-symmetric-like cavity magnomechanical system, Ann. Phys. 532(7), 2000028 (2020)

    MathSciNet  Google Scholar 

  34. B. Wang, Z. X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in \({\cal P}{\cal T}\)-symmetric cavity-magnon system, Opt. Express 26(16), 20248 (2018)

    ADS  Google Scholar 

  35. K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X 6(2), 021007 (2016)

    Google Scholar 

  36. Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, Experimental demonstration of a coherent perfect absorber with \({\cal P}{\cal T}\)-phase transition, Phys. Rev. Lett. 112(14), 143903 (2014)

    ADS  Google Scholar 

  37. B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity - time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)

    Google Scholar 

  38. Z. P. Liu, J. Zhang, S. K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. X. Liu, Metrology with \({\cal P}{\cal T}\)-symmetric cavities: Enhanced sensitivity near the \({\cal P}{\cal T}\)-phase transition, Phys. Rev. Lett. 117(11), 110802 (2016)

    ADS  Google Scholar 

  39. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)

    ADS  Google Scholar 

  40. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475(7356), 359 (2011)

    ADS  Google Scholar 

  41. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)

    ADS  Google Scholar 

  42. Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, Coupled cavities for motional ground-state cooling and strong optomechanical coupling, Phys. Rev. A 91(3), 033818 (2015)

    ADS  Google Scholar 

  43. K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6, 237250 (2011)

    Google Scholar 

  44. B. Y. Zhou and G. X. Li, Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum-dot — cavity system, Phys. Rev. A 94(3), 033809 (2016)

    ADS  Google Scholar 

  45. M. S. Ding, L. Zheng, and C. Li, Ground-state cooling of a magnomechanical resonator induced by magnetic damping, J. Opt. Soc. Am. B 37, 627 (2020)

    ADS  Google Scholar 

  46. X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Cavity magnomechanics, Sci. Adv. 2(3), e1501286 (2016)

    ADS  Google Scholar 

  47. J. Li, S. Y. Zhu, and G. S. Agarwal, Magnon-photon-phonon entanglement in cavity magnomechanics, Phys. Rev. Lett. 121(20), 203601 (2018)

    ADS  Google Scholar 

  48. T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58(12), 1098 (1940)

    ADS  MATH  Google Scholar 

  49. R. Simon, Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev. Lett. 84(12), 2726 (2000)

    ADS  Google Scholar 

  50. B. He, S. B. Yan, J. Wang, and M. Xiao, Quantum noise effects with Kerr-nonlinearity enhancement in coupled gainloss waveguides, Phys. Rev. A 91(5), 053832 (2015)

    ADS  Google Scholar 

  51. B. He, L. Yang, Z. Zhang, and M. Xiao, Cyclic permutation-time symmetric structure with coupled gainloss microcavities, Phys. Rev. A 91(3), 033830 (2015)

    ADS  Google Scholar 

  52. G. S. Agarwal and K. Qu, Spontaneous generation of photons in transmission of quantum fields in \({\cal P}{\cal T}\)-symmetric optical systems, Phys. Rev. A 85, 031802(R) (2012)

    ADS  Google Scholar 

  53. B. He, L. Yang, and M. Xiao, Dynamical phonon laser in coupled active-passive microresonators, Phys. Rev. A 94, 031802(R) (2016)

    ADS  Google Scholar 

  54. K. V. Kepesidis, T. J. Milburn, J. Huber, K. G. Makris, S. Rotter, and P. Rabl, \({\cal P}{\cal T}\)-symmetry breaking in the steady state of microscopic gain-loss systems, New J. Phys. 18(9), 095003 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61822114.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shou Zhang or Hong-Fu Wang.

Additional information

This article also can be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-0996-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ZX., Wang, L., Liu, YM. et al. Ground state cooling of magnomechanical resonator in \({\cal P}{\cal T}\)-symmetric cavity magnomechanical system at room temperature. Front. Phys. 15, 52504 (2020). https://doi.org/10.1007/s11467-020-0996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0996-y

Keywords

Navigation