Skip to main content

Advertisement

Log in

The content and distribution of trace elements and polycyclic aromatic hydrocarbons in soils of Maritime Antarctica

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Antarctica is considered as one of the most pristine areas on Earth. However, increasing intensity of human presence on the sixth continent (scientific operations, functioning of the numerous scientific stations, tourism activities) makes it crucial to investigate the level of environmental pollution within the vulnerable ecosystem of Antarctica. Soils play a significant role in processes of accumulation, mobilization, redistribution of chemical elements within landscapes, and ecosystems. The aim of this work was to analyze the levels of 17 polycyclic aromatic hydrocarbons and eight trace elements in soils of King George and Ardley islands, Western Antarctica. Moreover, our work was aimed to determine the trends and reasons of anthropogenic pollution of Antarctic soils and characterization of accumulation levels of trace elements and PAHs. Results showed the predominance of light PAHs in all studied sites. The content of benzo(a)pyrene does not exceed the threshold concentration (adopted by different national environmental legislation systems). At the same time, the content of benzo(a)pyrene, which is a marker of anthropogenic contamination, is relatively low or equal to 0 in soils of reference landscapes. Cu and Zn were found as most abundant elements in all studied soils. The highest lead concentration content has been described in soil from Bellingshausen station. In general term, obtained Igeo values for trace elements in all samples were under or slightly above the 0 level, indicating low to moderate pollution of the studied soils. This study also contributes new data on trace element accumulation in soils strongly influenced by ornithogenic factor. Principal component analysis allowed to estimate the probable sources of specific trace metals and their relationship with soil variables. Ornithogenic factor has been also revealed as a driver for some trace element accumulation especially in breeding penguin colonies. High contents of organic matter in ornithogenic habitats could increase trace metal mobility, environmental risks for surrounding terrestrial environments should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASPA:

Antarctic Specially Protected Area

ASMA:

Antarctic Specially Managed Area

CF :

contamination factor

Cdegree:

degree of contamination

ER:

ecological risk factor

Igeo:

Geoaccumulation Index

MAAT:

mean annual air temperature

MAST:

mean annual surface temperature

MAGT:

mean annual ground temperature

mCdegree:

modified degree of contamination

PLI:

Pollution Load Index

PAH:

polycyclic aromatic hydrocarbon

RI:

potential ecological risk index

PCA:

principal component analysis

Tr:

toxicity response

References

  • Abakumov, E., & Alekseev, I. (2018). Stability of soil organic matter in Cryosols of the maritime Antarctic: insights from 13C NMR and electron spin resonance spectroscopy. Solid Earth, 9, 1329–1339.

    Google Scholar 

  • Abakumov, E., Lodygin, E., Gabov, D., & Krylenkov, V. (2014). Polycyclic aromatic hydrocarbon content in Antarctic soils as exemplified by the Russian polar stations. Gigiena I sanitaria, 1, 31–35 (in Russian).

    Google Scholar 

  • Abakumov, E., Parnikoza, I., Lupachev, A., Lodygin, E., Gabov, D., & Kunakh, V. (2015). Content of polycyclic aromatic hydrocarbons in soils of Antarctic stations regions. Gigiena i Sanitariya, 94(7), 20–25 (in Russian).

    CAS  Google Scholar 

  • Abakumov, E., Lupachev, A., & Andreev, M. (2017). Trace element content in soils of the King Georgeand Elephant islands, maritime Antarctica. Chemistry and Ecology, 33(9), 856–868.

    CAS  Google Scholar 

  • Abrahim, G., & Parker, R. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    CAS  Google Scholar 

  • Aislabie, J., Balks, M., Astori, N., Stevenson, G., & Symons, R. (1999). Polycyclic aromatic hydrocarbons in fuel-oil contaminated soils, Antarctica. Chemosphere, 39(13), 2201–2207.

    CAS  Google Scholar 

  • Alekseev, I., Abakumov, E. (2020). Permafrost table depth in soils of Eastern Antarctica oases, King George and Ardley Islands (South Shetland Islands). Czech Polar Reports, 2 (in print).

  • Amaro, E., Padeiro, A., de Ferro, A., et al. (2016). Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley island, Antarctic. Marine Pollution Bulletin, 7(15), 523–527. https://doi.org/10.1016/j.marpolbul.2015.05.018.

    Article  CAS  Google Scholar 

  • Andrade, S., Poblet, A., Scagliola, M., Vodopivez, C., Curtosi, A., Pucci, A., & Marcovecchio, J. (2001). Distribution of heavy metals in surface sediments from an Antarctic marine ecosystem. Environmental Monitoring and Assessment, 66, 147–158.

    CAS  Google Scholar 

  • Andrade, R., Michel, R., Schaefer, C., & Simas, F. (2012). Hg distribution and speciation in Antarctic soils of the Fildes and Ardley peninsulas, King George Island. Antarctic Science, 24(4), 395–407.

    Google Scholar 

  • Argentina Secretary of Environment and Sustainable Development (ASESD) (1993). Directive No. 831/1993, Appendix II - Soil quality guideline levels (ug/g dry soil) (in Spanish).

  • Bargagli, R. (2008). Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400, 212–226.

    CAS  Google Scholar 

  • Bicego, M., Weber, R., & Ito, R. (1996). Aromatic hydrocarbons on surface waters of Admiralty Bay, King George Island, Antarctica. Marine Pollution Bulletin, 32, 549–553.

    CAS  Google Scholar 

  • Björck, S., Hjort, C., Ingólfsson, O., Zale, R., & Ising, J. (1996). Holocene deglaciation chronology from lake sediments. In López-Martínez, J., Thomson, M.R.,Thomson, J.W. (Eds.), Geomorphological map of Byers Peninsula, Livingston Island (pp. 49-51). BAS Geomap Series 5-A. Cambridge: British Ant Survey.

  • Blais, J., Kimpe, L., McMahon, D., Keatley, B., Mallory, M., Douglas, M., & Smol, J. (2005). Arctic seabirds transport marine-derived contaminants. Science, 309, 445. https://doi.org/10.1126/science.1112658.

    Article  CAS  Google Scholar 

  • Blaser, P., Zimmermann, S., Luster, J., & Shotyk, W. (2000). Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb and Zn in Swiss forest soils. Science of the Total Environment, 249, 257–280. https://doi.org/10.1016/S0048-9697(99),00522-7.

    Article  CAS  Google Scholar 

  • Brimble, S., Foster, K., Mallory, M., MacDonald, R., Smol, J., & Blais, J. (2009). High arctic ponds receiving biotransported nutrients from a nearby seabird colony areal so subject to potentially toxic loadings of arsenic, cadmium, and zinc. Environmental Toxicology and Chemistry, 28, 2426–2433.

    CAS  Google Scholar 

  • Cabrerizo, A., Tejedo, P., Dachs, J., & Benayas, J. (2016). Anthropogenic and biogenic hydrocarbons in soils and vegetation from the South Shetland Islands (Antarctica). Science of the Total Environment, 569–570, 1500–1509.

    Google Scholar 

  • Cai, M. H., Lin, J., Hong, Q. Q., Wang, Y., & Cai, M. G. (2011). Content and distribution of trace metals in surface sediments from the northern Bering Sea, Chukchi Sea and adjacent Arctic areas. Marine Pollution Bulletin, 63, 523–527.

    CAS  Google Scholar 

  • Canadian Council of Ministers of the Environment (CCME). (2010). Canadian soil quality guidelines, carcinogenic and other polycyclic aromatic hydrocarbons (PAHs).

  • Coulon, F., Pelletier, E., Gourhant, L., & Delille, D. (2005). Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere, 58, 1439–1448.

    CAS  Google Scholar 

  • Cripps, G. (1992). The extent of hydrocarbon contamination in themarine environment from a research station in the Antarctic. Marine Pollution Bulletin, 25, 288–292.

    CAS  Google Scholar 

  • Cripps, G., & Priddle, J. (1991). Hydrocarbons in the Antarctic marine environment. Antarctic Science, 3, 233–250.

    Google Scholar 

  • Curtosi, A., Pelletier, E., Vodopivez, C., & MacCormack, W. (2007). Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica): role of permafrost as a low-permeability barrier. Science of the Total Environment, 383(1–3), 193–204.

    CAS  Google Scholar 

  • Dalfior, B., Roriz, L., Júnior, R., et al. (2016). Evaluation of Pb, Cd, Sn, Co,Hg, Mo E As in soils of Fildes Peninsula - Antarctica. Quim Nova, 39(8), 893–900. https://doi.org/10.21577/0100-4042.20160134.

    Article  CAS  Google Scholar 

  • EPRI (Electric Power Research Institute). (2000). Literature review of background polycyclic aromatic hydrocarbons. Final report 2000.

  • Espejo, W., Celis, J., Sandoval, M., Gonzalez-Acuna, D., Barra, D., & Capulin, J. (2017). The impact of penguins on the content of trace elements and nutrients in coastal soils of North Western Chile and the Antarctic Peninsula Area. Water, Air, and Soil Pollution, 228, 116. https://doi.org/10.1007/s11270-017-3303-y.

    Article  CAS  Google Scholar 

  • Giordano, R., Lombard, G., Ciaralli, L., Beccaloni, E., Sepe, A., Ciprotti, M., & Costantini, S. (1999). Major and trace elements in sediments from Terra Nova Bay, Antarctica. Science of the Total Environment, 227, 29–40.

    CAS  Google Scholar 

  • Goryachkin, S. V. (2014). Soil cover of the North (Patterns, Genesis, Ecology, Evolution). Moscow: GEOS (in Russian).

  • Green, G., Skerratt, J., Leeming, R., & Nichols, P. (1992). Hydrocarbons and coprostanol levels in seawater, sea-ice algae and sediments near Davis Station in Eastern Antarctica: a regional survey and preliminary results for a field fuel spill experiment. Marine Pollution Bulletin, 25, 293–302.

    CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution-control - a sedimentological approach. Water Research, 14, 975–1001.

    Google Scholar 

  • Hofle, S., Rethemeyer, J., Mueller, C., & John, S. (2013). Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta. Biogeosciences, 10, 3145–3158. https://doi.org/10.5194/bg-10-3145-2013.

    Article  CAS  Google Scholar 

  • Hygienical standart GN 2.1.7.2041-06. (2006). Maximum permissible concentrations of chemical substances in soil. Moscow (in Russian).

  • Ianni, C., Magi, E., Soggia, F., Rivaro, P., & Frache, R. (2009). Trace metal speciation in coastal and off-shore sediments from Ross Sea (Antarctica). Microchemical Journal, 96(2), 203–212. https://doi.org/10.1016/j.microc.2009.07.016.

    Article  CAS  Google Scholar 

  • International Organization for Standardization. (2014). ISO 18227:2014(E). In Soil quality. Geneva: Determination of elemental composition by X-ray fluorescence.

    Google Scholar 

  • Kennicutt, I., McDonald, M., Denoux, T., & McDonald, G. (1992). Hydrocarbon contamination on the Antarctic Peninsula. I. Arthur Harbor – subtidal sediments. Marine Pollution Bulletin, 24, 499–506.

    CAS  Google Scholar 

  • Krol, A., Mizerna, K., & Bozym, M. (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384, 121502.

    CAS  Google Scholar 

  • Licínio, M., Patchineelan, S., Evangelista, H., & Araripe, D. (2008). History of heavy metals contamination in lacustrine sediments of Admiralty bay, King George Island, Antarctic Peninsula. Indian Journal of Marine Sciences, 37, 391–395.

    Google Scholar 

  • Ligeza, S., & Smal, H. (2003). Accumulation of nutrients in soil affected by perennial colonies of piscivorous birds with reference to biogeochemical cycles of elements. Chemosphere, 52, 595–602.

    CAS  Google Scholar 

  • Likuku, S., Mmolawa, K., & Gaboutloetloe, G. (2013). Assessment of heavy metal enrichment and degree of contamination around the copper-nickel mine in the Selebi Phikwe Region, Eastern Botswana. Environment and Ecology Research, 1(2), 3240.

    Google Scholar 

  • López-Martínez, J., Martínez de Pisón, E., Serrano, E., & Arche, A. (1995). Geomorphological map of Byers Peninsula, Livingston Island, E. 1:25 000. BAS Geomap Series 5-A. Cambridge: British Ant Survey.

    Google Scholar 

  • Lu, Z., Cai, M., Wang, J., Yang, H., & He, J. (2012). Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environmental Monitoring and Assessment, 184, 7013–7021. https://doi.org/10.1007/s10661-011-2476-x.

    Article  CAS  Google Scholar 

  • Lupachev, A., & Abakumov, E. (2013). Soils of Marie Byrd Land, West Antarctica. Eurasian Soil Science, 46(10), 994–1006.

    CAS  Google Scholar 

  • Lupachev, A., Abakumov, E., Goryachkin, S., & Veremeeva, A. (2020). Soil cover of the Fildes Peninsula (King George Island, West Antarctica). Catena, 193, 104613.

    CAS  Google Scholar 

  • Machender, G., Dhakate, R., Prasanna, L., & Govil, P. (2011). Assessment of heavy metal contamination in soils around Balanagar industrial area, Hyderabad, India. Environmental Earth Sciences, 63(5), 945–953. https://doi.org/10.1007/s12665-010-0763-4.

    Article  CAS  Google Scholar 

  • Manna, A., & Maiti, R. (2018). Geochemical contamination in the mine affected soil of Raniganj Coalfield - a river basin scale assessment. Geoscience Frontiers, 9(5), 1577–1590. https://doi.org/10.1016/j.gsf.2017.10.011.

    Article  CAS  Google Scholar 

  • Mazzera, D., Hayes, T., Lowenthal, D., & Zielinska, B. (1999). Quantification of polycyclic hydrocarbons in soil at McMurdo Station, Antarctica. Science of the Total Environment, 229, 65–71.

    CAS  Google Scholar 

  • Mendonca, T., Vander, M., Alleoni, L., Schaefer, C., & Michel, R. (2012). Lead adsorption in the clay fraction of two soil profiles from Fildes Peninsula, King George Island. Antarctic Science, 25(3), 389–396. https://doi.org/10.1017/S0954102012001071.

    Article  Google Scholar 

  • Metcheva, R., Yurukova, L., & Teodorova, S. (2011). Biogenic and toxic elements in feathers, eggs, and excreta of Gentoo penguin (Pygoscelis papua ellsworthii) in the Antarctic. Environmental Monitoring and Assessment, 182, 571–585. https://doi.org/10.1007/s10661-011-1898-9.

    Article  CAS  Google Scholar 

  • Michel, R., Schaefer, C., Dias, L., Simas, F., Benites, V., & Mendonca, E. (2006). Ornithogenic gelisols (cryosols) from Maritime Antarctica: pedogenesis, vegetation and carbon studies. Soil Science Society of America Journal, 70, 1370–1376.

    CAS  Google Scholar 

  • Moskovchenko, D., Kurchatova, A., Fefilov, N., & Yurtaev, A. (2017). Concentrations of trace elements and iron in the Arctic soils of Belyi Island (the Kara Sea, Russia): patterns of variation across landscapes. Environmental Monitoring and Assessment, 189, 210. https://doi.org/10.1007/s10661-017-5928-0.

    Article  CAS  Google Scholar 

  • Muller, G. (1971). Schwermetalle in den sediment des Rheins, Veranderungem Seit. Umschau, 79, 778–783 (in German).

    Google Scholar 

  • Nazarnia, H., Nazarnia, M., Sarmasti, H., & Wills, W. (2020). A systematic review of civil and environmental infrastructures for coastal adaptation to sea level rise. Civil Engineering Journal, 6(7), 1375–1399.

    Google Scholar 

  • Negri, A., Burns, K., Boyle, S., Brinkman, D., & Webster, N. (2006). Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution, 143, 456–467.

    CAS  Google Scholar 

  • Nematollahi, H., Moradi, N., Riyazi Nejad, M., & Vahidi, H. (2018). Removal of aliphatic hydrocarbons from gas oil contaminated clay soil via soil vapor extraction. Civil Engineering Journal, 4(8), 1858.

    Google Scholar 

  • Oyola-Guzman, R., & Oyola-Morales, R. (2018). Forensic evaluation of compacted soils using RAMCODES. Civil Engineering Journal, 4(10), 2275–2283.

    Google Scholar 

  • Padeiro, A., Amaro, E., dos Santos, M., Araujo, M., Gomes, S., Leppe, M., Verkulich, S., Hughes, K., Peter, H. U., & Canario, J. (2016). Trace element contamination and availability in the Fildes Peninsula, King George Island, Antarctica. Environmental Science. Processes & Impacts, 18(6), 648–657. https://doi.org/10.1039/c6em00052e.

    Article  CAS  Google Scholar 

  • Pelletier, E., Delille, D., & Delille, B. (2004). Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues. Marine Environmental Research, 57(4), 311–327.

    CAS  Google Scholar 

  • Pereira, T., Schaefer, C., Ker, J., Almeida, C., Almeida, I., & Pereira, A. (2013). Genesis, mineralog y and ecological significance of ornithogenic soils from a semi-desert polar landscape at Hope Bay, Antarctic Peninsula. Geoderma, 209–210, 98–109. https://doi.org/10.1016/j.geoderma.2013.06.012.

    Article  CAS  Google Scholar 

  • Pongpiachan, S., Hattayanone, M., Pinyakong, O., Viyakarn, V., Chavanich, S., Khumsup, C., Kittikoon, I., & Hirunyatrakul, P. (2017). Quantitative ecological risk assessment of inhabitants exposed to polycyclic aromatic hydrocarbons in terrestrial soils of King George Island, Antarctica. Polar Science, 11, 19–29.

    Google Scholar 

  • Reimann, C., & de Caritat, P. (2005). Distinguishing between natural anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337, 91–107. https://doi.org/10.1016/j.scitotenv.2004.06.011.

    Article  CAS  Google Scholar 

  • Ribeiro, A., Figueira, R., Martins, C., Silva, C., Franca, E., Bicego, M., Mahiques, M., & Montone, R. (2011). Arsenic and trace metal contents in sediment profiles from the Admiralty Bay, King George Island, Antarctica. Marine Pollution Bulletin, 62, 192–196.

    CAS  Google Scholar 

  • Romaniuk, K., Ciok, A., Decewicz, P., Uhrynowski, W., Budzik, K., Nieckarz, M., Pavlovska, J., Zdanowski, M., Bartosik, D., & Dziewit, L. (2018). Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biology, 41, 1319–1333. https://doi.org/10.1007/s00300-018-2287-4.

    Article  Google Scholar 

  • Rovinsky, F., Teplickaja, T., & Alekseeva, T. (1988). Background monitoring of polycyclic aromatic hydrocarbons. Leningrad: Gidrometeoizdat (in Russian).

    Google Scholar 

  • Sahoo, P., Equeenuddin, S., & Powell, M. (2016). Trace elements in soils around coal mines: current scenario, impact and available techniques for management. Current Pollution Reports, 2(1), 1–14. https://doi.org/10.1007/s40726-016-0025-5.

    Article  CAS  Google Scholar 

  • Santos, I., Silva-Filho, E., Schaefer, C., Albuquerque-Filho, M., & Campos, L. (2005). Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic station, King George Island. Marine Pollution Bulletin, 50, 185–194.

    CAS  Google Scholar 

  • Santos, I., Favaro, D., Schaefer, C., & Silva-Filho, E. (2007). Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay, King George Island): evidence from rare earths and other elements. Marine Chemistry, 107, 464–474.

    CAS  Google Scholar 

  • Schaefer, C., Simas, F., Gilkes, R., Mathison, C., Costa, L., & Albuquerque, M. (2008). Micromorphology and microchemistry of selected cryosols from Maritime Antarctica. Geoderma, 144, 104–115. https://doi.org/10.1016/j.geoderma.2007.10.018.

    Article  CAS  Google Scholar 

  • Schnitzer, M. (1986). Binding of humic substances by soil mineral colloids. In P. Huang & M. Schnitzer (Eds.), Interactions of Soil Minerals with Natural Organics and Microbes (pp. 77–101). Madison: Soil Science Society of America, Special Publication.

    Google Scholar 

  • Simas, N., Schaefer, C., Mendonca, E., Silva, I., & Ribeiro, A. (2007). Organic carbon stocks in permafrost-affected soils from Admiralty Bay, Antarctica. Journal of Research of the U.S. Geological Survey, 1047, 76–79.

    Google Scholar 

  • Smith, V. (1979). The influence of seabird manuring on the phosphorus status of Marion Island (Subantarctic) soils. Oecologia (Berl), 41, 123–126.

    Google Scholar 

  • Szopinska, M., Szumińska, D., Bialik, J., Dymerski, T., Rosenberg, E., & Polkowska, Z. (2019). Determination of polycyclic aromatic hydrocarbons (PAHs) and other organic pollutants in freshwaters on the western shore of Admiralty Bay (King George Island, Maritime Antarctica). Environmental Science and Pollution Research, 26, 18143–18161.

    CAS  Google Scholar 

  • Tarnocai, C., Canadell, J., Schuur, E., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023.

    Google Scholar 

  • Terauds, A., Chown, S., Morgan, F., Peat, H., Watts, D., Keys, H., Convey, P., & Bergstorm, D. (2012). Conservation biogeography of the Antarctic. Diversity and Distributions, 18, 726–774.

    Google Scholar 

  • Tomlinson, D., Wilson, J., Harris, C., & Jeffrey, D. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Wissenschaftliche Meeresuntersuchungen, 33, 566–575.

    Google Scholar 

  • Townsend, A., Snape, I., Palmer, A., & Seen, A. (2009). Lead isotopic signatures in Antarctic marine sediment cores: a comparison between 1 M HCl partial extraction and HF total digestion pre-treatments for discerning anthropogenic inputs. The Science of the Total Environment, 408(2), 382–389. https://doi.org/10.1016/j.scitotenv.2009.10.014.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (1996a). Method 8310: polynuclear aromatic hydrocarbons. Washington: Office of Health and Environmental Assessment. Revision 0.

    Google Scholar 

  • U.S. Environmental Protection Agency. (1996b). Method 3550b: ultra-sonic extraction. Washington: Office of Health and Environ-mental Assessment. Revision 2.

    Google Scholar 

  • U.S. Environmental Protection Agency. (1996c). Method 3630c: silica gel cleanup (Revision 3 ed.). Washington: Office of Health and Environmental Assessment.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). (2011). Regional screening levels (Formerly PRGs). Washington.

  • UNEP (United Nations Environment Programme Chemicals). (2002). Regionally based assessment of persistent toxic substances. In Antarctic regional report. Geneva: Global Environment Facility.

    Google Scholar 

  • Waheed, S., Ahmad, S., Rahman, A., & Qureshi, I. (2001). Antarctic marine sediments as fingerprints of pollution migration. Journal of Radioanalytical and Nuclear Chemistry, 250, 97–107.

    Google Scholar 

  • Wasserman, J., Oliveira, F., & Bidarra, M. (1998). Cu and Fe associated with humic acids in sediments of a tropical coastallagoon. Organic Geochemistry, 28, 813–822.

    CAS  Google Scholar 

  • Wojtun, B., Kolon, K., Samecka-Cymerman, A., et al. (2013). Survey of metal concentrations in higherplants, mosses and lichens collected on King George Island in 1988. Polar Biology, 36, 913–918. https://doi.org/10.1007/s00300-013-1306-8.

    Article  Google Scholar 

  • World reference base for soil resources. (2014). Rome: FAO.

  • Young, L., & Cerniglia, E. (1995). Microbial transformation and degradation of toxic organic chemicals. New York: Wiley-Liss.

    Google Scholar 

  • Yuguang, W., & Junlin, Z. (1991). Determination of rare earths and other trace elements in samples of Antarctica by neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 151, 345–355.

    Google Scholar 

  • Yunker, M., & Macdonald, R. (2004). Alkane and PAH depositional history, sources and fluxes in sediments from Fraser River basin and Strait of Georgia, Canada. Organic Geochemistry, 34, 142–154.

    Google Scholar 

  • Zahran, M., El-Almier, Y., Elnaggar, A., et al. (2015). assessment and distribution of heavy metals pollutants in Manzala Lake, Egypt. Journal of Geoscience and Environment Protection, 3, 107–122.

    Google Scholar 

Download references

Acknowledgments

This study was supported by Russian Scientific Foundation for Basic Research, grant nos. 19-54-18003 “Assessment of regional contribution of soils of Antarctic Islands into global carbon balance including degree of stabilization and humification of organic matter,” 19-05-50107 “The role of organic matter microparticles in degradation of glacier cover of polar regions and formation of soil-like bodies,” 18-04-00900 “Ornithogenic soils of Antarctica: formation, geography and biogeochemistry,” and Russian Antarctic Expedition (Arctic and Antarctic Research Institute, Saint Petersburg, Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Alekseev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, I., Abakumov, E. The content and distribution of trace elements and polycyclic aromatic hydrocarbons in soils of Maritime Antarctica. Environ Monit Assess 192, 670 (2020). https://doi.org/10.1007/s10661-020-08618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08618-2

Keywords

Navigation