Skip to main content
Log in

How the Aggregates Determine Bound Rubber Models in Silicone Rubber? A Contrast Matching Neutron Scattering Study

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The correlation between aggregates and bound rubber structures in silicone rubbers (S(phr)) with various silica fractions (ΦSi) has been investigated by contrast matching small-angle neutron scattering (SANS), swelling kinetics, and low-field nuclear magnetic resonance (NMR). Mixed solvents with deuterated cyclohexane fractions of 4.9% and 53.7% were chosen to match the scattering length densities of the matrix (SMP(phr)) and the filler (SMS(phr)), respectively. All the data consistently suggest that: (i) There is a critical threshold ΦSic between 10 and 30 phr; below Φsic, the isolated aggregates are dominant, while beyond Φsic, some rubber fraction is trapped among the agglomerate; (ii) Φsr-independent thicknesses around 7.5 nm (NMR) and 8.6 nm (SANS) suggest that the bound rubber formation is determined by inherent properties of the components, and the power-law around 4.2 suggests an exponential changed gradient density of the bound rubber; (iii) SMS(80) presents a bicontinuous bound rubber with three characteristic lengths of 41, 100, and 234 nm. The expanded correlation length, a 20 nm smaller aggregate sizes suggest that such existent bicontinuous network in dry samples with less ΦSi is kind of impacted by swelling. With the obtained bound rubber models, the reinforcing mechanism of filled silicone rubber is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, L.; Lu, L.; Wu, D.; Chen, G. Silicone rubber/graphite nanosheet electrically conducting nanocomposite with a low percolation threshold. Compos. Polym. 2007, 28, 493–498.

    Google Scholar 

  2. Hanu, L.; Simon, G.; Cheng, Y. Preferential orientation of muscovite in ceramifiable silicone composites. Mater. Sci. Eng. A 2005, 398, 180–187.

    Google Scholar 

  3. Genovese, A.; Shanks, R. A. Fire performance of poly(dimethyl siloxane) composites evaluated by cone calorimetry. Compos. Part A 2008, 39, 398–405.

    Google Scholar 

  4. Yang, B.; Zhang, S. H.; Zou, Y. F.; Ma, W. S.; Huang, G. J.; Li, M. D. Improving the thermal conductivity and mechanical properties of two-component room temperature vulcanized silicone rubber by filling with hydrophobically modified SiO2-graphene nanohybrids. Chinese J. Polym. Sci. 2019, 37, 189–196.

    CAS  Google Scholar 

  5. Imamura, W.; Usuda, É. O.; Paixão, L. S.; Bom, N. M.; Gomes, A. M.; Carvalho, A. M. G. Supergiant barocaloric effects in acetoxy silicone rubber over a wide temperature range: great potential for solid-state cooling. Chinese J. Polym. Sci. 2020.

  6. Shinohara, Y.; Kishimoto, H.; Yagi, N.; Amemiya, Y. Microscopic observation of aging of silica particles in unvulcanized rubber. Macromolecules 2010, 43, 9480–9487.

    CAS  Google Scholar 

  7. Levresse, P.; Feke, D. L.; Manas-Zloczower, I. Analysis of the formation of bound poly(dimethylsiloxane) on silica. Polymer 1998, 39, 3919–3924.

    CAS  Google Scholar 

  8. Litvinov, V. M.; Orza, R. A.; Kluüppel, M.; van Duin, M.; Magusin, P. C. M. M. Rubber-filler interactions and network structure in relation to stress-strain behavior of vulcanized, carbon black filled EPDM. Macromolecules 2011, 44, 4887–4900.

    CAS  Google Scholar 

  9. Kohls, D. J.; Beaucage, G. Rational design of reinforced rubber. Curr. Opin. Solid State Mater. Sci. 2002, 6, 183–194.

    CAS  Google Scholar 

  10. Wang, M. Effect of polymer-filler and filler-filler reciprocity to dynamic mechanics performance of filling-vulcanization rubber. Rubber Chem. Technol. 1998, 71, 520–589.

    CAS  Google Scholar 

  11. Li, Y.; Ren, M.; Lv, P.; Liu, Y.; Shao, H.; Wang, C.; Tang, C.; Zhou, Y.; Shuai, M. A robust and flexible bulk superhydrophobic material from silicone rubber/silica gel prepared by thiol-ene photopolymerization. J. Mater. Chem. A 2019, 7, 7242–7255.

    CAS  Google Scholar 

  12. Song, L.; Wang, Z.; Tang, X.; Chen, L.; Chen, P.; Yuan, Q.; Li, L. Visualizing the toughening mechanism of nanofiller with 3D X-ray nano-CT: stress-induced phase separation of silica nanofiller and silicone polymer double networks. Macromolecules 2017, 50, 7249–7257.

    CAS  Google Scholar 

  13. Wei, C. S.; Lu, A.; Sun, S. M.; Wei, X. W.; Zhou, X. Y.; Sun, J. Establishment of constitutive model of silicone rubber foams based on statistical theory of rubber elasticity. Chinese J. Polym. Sci. 2018, 36, 1077–1083.

    CAS  Google Scholar 

  14. Kang, X. W.; Liu, D.; Zhang, P.; Kang, M.; Chen, F.; Yuan, Q. X.; Zhao, X. L.; Song, Y. Z.; Song, L. X. Revisiting silica networks by small-angle neutron scattering and synchrotron radiation X-ray imaging techniques. Chinese J. Polym. Sci. 2020, 38, 1006–1014.

    CAS  Google Scholar 

  15. Baeza, G. P.; Genix, A. C.; Degrandcourt, C.; Petitjean, L.; Gummel, J.; Couty, M.; Oberdisse, J. multiscale filler structure in simplified industrial nanocomposite silica/SBR systems studied by SAXS and TEM. Macromolecules 2013, 46, 317–329.

    CAS  Google Scholar 

  16. Papon, A.; Montes, H.; Lequeux, F.; Oberdisse, J.; Saalwächter, K.; Guy, L. Solid particles in an elastomer matrix: impact of colloid dispersion and polymer mobility modification on the mechanical properties. Soft Matter 2012, 8, 4090–4096.

    CAS  Google Scholar 

  17. Rishi, K.; Beaucage, G.; Kuppa, V.; Mulderig, A.; Narayanan, V.; McGlasson, A.; Rackaitis, M.; Ilavsky, J. Impact of an emergent hierarchical filler network on nanocomposite dynamics. Macromolecules 2018, 51, 7893–7904.

    CAS  Google Scholar 

  18. Kim, S. Y.; Meyer, H. W.; Saalwächter, K.; Zukoski, C. F. Polymer dynamics in PEG-silica nanocomposites: effects of polymer molecular weight, temperature and solvent dilution. Macromolecules 2012, 45, 4225–4237.

    CAS  Google Scholar 

  19. Papon, A.; Saalwächter, K.; Schäler, K.; Guy, L.; Lequeux, F.; Montes, H. Low-field NMR investigations of nanocomposites: polymer dynamics and network effects. Macromolecules 2011, 44, 913–922.

    CAS  Google Scholar 

  20. Papon, A.; Montes, H.; Hanafi, M.; Lequeux, F.; Guy, L.; Saalwächter, K. Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry. Phys. Rev. Lett. 2012, 108, 065702.

    PubMed  Google Scholar 

  21. Sawvel, A. M.; Chinn, S. C.; Gee, M.; Loeb, C. K.; Maiti, A.; Mason, H. E.; Maxwell, R. S.; Lewicki, J. P. Nonideality in silicone network formation via solvent swelling and 1H double-quantum NMR. Macromolecules 2019, 52, 410–419.

    CAS  Google Scholar 

  22. Saalwächter, K. Detection of heterogeneities in dry and swollen polymer networks by proton low-field NMR spectroscopy. J. Am. Chem. Soc. 2003, 125, 14684–14685.

    PubMed  Google Scholar 

  23. Chassé, W.; Schlögl, S.; Riess, G.; Saalwächter, K. Inhomogeneities and local chain stretching in partially swollen networks. Soft Matter 2013, 9, 6943–6954.

    Google Scholar 

  24. Chen, W.; Liu, D.; Li, L. Multiscale characterization of semicrystalline polymeric materials by synchrotron radiation X-ray and neutron scattering. Polym. Crystal. 2019, 2, 10043.

    Google Scholar 

  25. Liu, D.; Li, X.; Song, H.; Wang, P.; Chen, J.; Tian, Q.; Sun, L.; Chen, L.; Chen, B.; Gong, J.; Sun, G. Hierarchical structure of MWCNT reinforced semicrystalline HDPE composites: a contrast matching study by neutron and X-ray scattering. Eur. Polym. J. 2018, 99, 18–26.

    CAS  Google Scholar 

  26. Li, L. B. In situ synchrotron radiation techniques: watching deformation-induced structural evolutions of polymers. Chinese J. Polym. Sci. 2018, 36, 1093–1102.

    CAS  Google Scholar 

  27. Liu, H.; Huang, G.; Wei, L.; Zeng, J.; Fu, X.; Huang, C.; Wu, J. Inhomogeneous natural network promoting strain-induced crystallization: a mesoscale model of natural rubber. Chinese J. Polym. Sci. 2019, 37, 1142–1151.

    CAS  Google Scholar 

  28. Yang, H.; Liu, D.; Ju, J.; Li, J.; Wang, Z.; Yan, G.; Ji, Y.; Zhang, W.; Sun, G.; Li, L. Chain deformation on the formation of shish nuclei under extension flow: an in situ SANS and SAXS study. Macromolecules 2016, 49, 9080–9088.

    CAS  Google Scholar 

  29. López-Barrón, C. R.; Zeng, Y.; Schaefer, J. J.; Eberle, A. P.; Lodge, T. P.; Bates, F. S. Molecular alignment in polyethylene during cold drawing using in-situ SANS and raman spectroscopy. Macromolecules 2017, 50, 3627–3636.

    Google Scholar 

  30. Banc, A.; Genix, A. C.; Dupas, C.; Sztucki, M.; Schweins, R.; Appavou, M. S.; Oberdisse, J. Origin of small-angle scattering from contrast-matched nanoparticles: a study of chain and filler structure in polymer nanocomposites. Macromolecules 2015, 48, 6596–6605.

    CAS  Google Scholar 

  31. Richards, J. J.; Whittle, C. L.; Shao, G.; Pozzo, L. D. Correlating structure and photocurrent for composite semiconducting nanoparticles with contrast variation small-angle neutron scattering and photoconductive atomic force microscopy. ACS Nano 2014, 8, 4313–4324.

    CAS  PubMed  Google Scholar 

  32. Wang, T.; Tian, N.; Chen, J.; Huang, L.; Sun, G.; Gong, J.; Liu, D. Revisiting flow-induced crystallization of polyethylene inversely: an in situ swelling SANS study. Polymer 2019, 184, 121934.

    CAS  Google Scholar 

  33. Sonntag, M.; Jagtap, P. K. A.; Simon, B.; Appavou, M. S.; Geerlof, A.; Stehle, R.; Gabel, F.; Hennig, J.; Sattler, M. domam-selective perdeuteration and small-angle neutron scattering for structural analysis of multi-domain proteins. Angew. Chem. Int. Ed. 2017, 56, 9322–9325.

    CAS  Google Scholar 

  34. Liu, D.; Chen, J.; Song, L.; Lu, A.; Wang, Y.; Sun, G. Parameterization of silica-filled silicone rubber morphology: a contrast variation SANS and TEM study. polymer 2017, 120, 155–163.

    CAS  Google Scholar 

  35. Liu, D.; Song, L.; Song, H.; Chen, J.; Tian, Q.; Chen, L.; Sun, L.; Lu, A.; Huang, C.; Sun, G. Correlation between mechanical properties and microscopic structures of an optimized silica fraction in silicone rubber. Compos. Sci. Technol. 2018, 165, 373–379.

    CAS  Google Scholar 

  36. Peng, M.; Sun, L.; Chen, L.; Sun, G.; Chen, B.; Xie, C.; Xia, Q.; Yan, G.; Tian, Q.; Huang, C. A new small-angle neutron scattering spectrometer at china mianyang research reactor. Nucl. Instrum. Methods Phys. Res., Sect. A 2016, 810, 63–67.

    CAS  Google Scholar 

  37. Chen, L.; Sun, L.; Tian, Q.; Wang, T.; Chen, J.; Sun, G.; Huang, C.; Liu, D. Upgrade of a small-angle neutron scattering spectrometer suanni of China Mianyang research reactor. J. Instrum. 2018, 13, P08025.

    Google Scholar 

  38. Tian, Q.; Yan, G.; Bai, L.; Chen, J.; Liu, D.; Chen, L.; Sun, L.; Huang, C.; Chen, B.; Nagy, G. Calibration of the suanni small-angle neutron scattering instrument at the China Mianyang research reactor. J. Appl. Crystallogr. 2018, 51, 1662–1670.

    CAS  Google Scholar 

  39. Ehrburgerdolle, F.; Hindermannbischoff, M.; Livet, F.; Bley, F.; Rochas, A. C.; Geissler, E. Anisotropic ultra-small-angle X-ray scattering in carbon black filled polymers. Langmuir 2001, 17, 329–334.

    CAS  Google Scholar 

  40. Schmidt, P. W. Small-angle scattering studies of disordered, porous and fractal systems. J. Appl. Crystallogr. 1991, 44, 414–435.

    Google Scholar 

  41. Beaucage, G.; Schaefer, D. W. Structural studies of complex systems using small-angle scattering: a unified guinier/power-law approach. J. Non-Cryst. Solids 1994, 172, 797–805.

    Google Scholar 

  42. Ruland, W. Small-angle scattering of two-phase systems: determination and significance of systematic deviations from Porod’s law. J. Appl. Crystallogr. 2010, 4, 70–73.

    Google Scholar 

  43. Schmidt, P. W.; Avnir, D.; Levy, D.; Höhr, A.; Steiner, M.; Röll, A. small-angle X-ray scattering from the surfaces of reversed-phase silicas: power-law scattering exponents of magnitudes greater than four. J. Chem. Phys. 1991, 94, 1474–1479.

    CAS  Google Scholar 

  44. Mujtaba, A.; Keller, M.; Ilisch, S.; Radusch, H. J.; Beiner, M.; Thurn-Albrecht, T.; Saalwächter, K. Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber-silica nanocomposites. ACS Macro Lett. 2014, 3, 481–485.

    CAS  Google Scholar 

  45. Golitsyn, Y.; Schneider, G. J.; Saalwachter, K. Reduced-mobility layers with high internal mobility in poly(ethylene oxide)-silica nanocomposites. J. Chem. Phys. 2017, 146, 203303–203303.

    PubMed  Google Scholar 

  46. Oh, S. M.; Abbasi, M.; Shin, T. J.; Saalwachter, K.; Kim, S. Y. Initial solvent-driven nonequilibrium effect on structure, properties, and dynamics of polymer nanocomposites. Phys. Rev. Lett. 2019, 123.

  47. Chassé, W.; Lang, M.; Sommer, J. U.; Saalwächter, K. Cross-imk density estimation of PDMS networks with precise consideration of networks defects. Macromolecules 2012, 45, 899–912.

    Google Scholar 

  48. Valentín, J. L.; Posadas, P.; Fernández-Torres, A.; Malmierca, M. A.; González, L.; Chassé, W.; Saalwächter, K. Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems. Macromolecules 2010, 43, 4210–4222.

    Google Scholar 

  49. Mordvinkin, A.; Saalwächter, K. Microscopic observation of the segmental orientation autocorrelation function for entangled and constrained polymer chains. J. Chem. Phys. 2017, 146, 094902.

    Google Scholar 

  50. Chassé, W.; Valentín, J. L.; Genesky, G. D.; Cohen, C.; Saalwächter, K. Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers. J. Chem. Phys. 2011, 134, 044907.

    PubMed  Google Scholar 

  51. Schneider, G. J.; Vollnhals, V.; Brandt, K.; Roth, S. V.; Göritz, D. Correlation of mass fractal dimension and cluster size of silica in styrene butadiene rubber composites. J. Chem. Phys. 2010, 133, 094902.

    PubMed  Google Scholar 

  52. Kato, A.; Ikeda, Y.; Kasahara, Y.; Shimanuki, J.; Suda, T.; Hasegawa, T.; Sawabe, H.; Kohjiya, S. Optical transparency and silica network structure in cross-linked natural rubber as revealed by spectroscopic and three-dimensional transmission electron microscopy techniques. J. Opt. Soc. Am. B 2008, 25, 1602–1615.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2018YFB0704200), the National Natural Science Foundation of China (Nos. 11605171 and 11705173), and the Foundation of President of CAEP (No. YZJJLX2018004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Ai Sun or Dong Liu.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, LZ., Shui, Y., Chen, W. et al. How the Aggregates Determine Bound Rubber Models in Silicone Rubber? A Contrast Matching Neutron Scattering Study. Chin J Polym Sci 39, 365–376 (2021). https://doi.org/10.1007/s10118-020-2485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2485-8

Keywords

Navigation