Skip to main content

Advertisement

Log in

Spatial trends of Potamogetonaceae along an altitudinal gradient

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Studying the effect of altitude on species distribution may help us to predict the response of species to future climate changes, which will likely cause upward migration of vegetation zones. In this study, we aimed to analyze distribution and abundance patterns of Potamogetonaceae along an altitudinal gradient and to determine the species characterizing a priori defined five altitudinal groups. We included 294 sampling for 19 species from 141 wetlands across Turkey with an elevation gradient of 2700 m. Analysis of similarities (ANOSIM) found significant differences in species assemblages only between some altitudinal groups. Seven species were found in either high or low altitudes. Stuckenia pectinata had the highest contribution to all groups except one in analysis of similarity percentages. Detrended correspondence analysis revealed a clear altitudinal gradient by placing species under six clusters. Even widespread species occurring in all altitudes showed a tendency of altitudinal preference. The results were inferred from our physicochemical measurements for the species and relevant literature. Exclusively highland species were found in waters with similar physical and chemical properties (i.e. low electrical conductivity, salinity, and ammonium concentrations). However, lowland species were sampled from very diverse aquatic habitats. Among the lowland species Potamogeton acutifolius was found under low values for the above-mentioned physicochemical water parameters but Althenia orientalis showed extremely high values, as well as Potamogeton coloratus and Potamogeton nodosus. Understanding elevational distribution of macrophytes is especially important due to difficulties in their upward migration and availability of suitable aquatic habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdellah M, Saad B (2019) Impact of hydromorphological pressures on the macrophytes bioindicators of the ecological water quality in Mediterranean rivers. BioRisk 14:1

    Article  Google Scholar 

  • Akhani H (2014) Groenlandia densa. The IUCN Red List of Threatened Species 2014: e.T164174A42321506. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T164174A42321506.en. Accessed 18 Jan 2020

  • Akman Y, Ketenoǧlu O (1986) The climate and vegetation of Turkey. Proc R Soc Edinburgh Sec B: Biol Sci 89:123–134

    Google Scholar 

  • Alahuhta J (2015) Geographic patterns of lake macrophyte communities and species richness at regional scale. J Veg Sci 26:564–575

    Article  Google Scholar 

  • Allen DJ (2011) Potamogeton alpinus. The IUCN Red List of Threatened Species 2011: e.T167896A6408679. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T167896A6408679.en. Accessed 06 Nov 2019

  • Atalay I, Efe R (2010) Structural and distributional evaluation of forest ecosystems in Turkey. J Environ Biol 31:61–70

    PubMed  Google Scholar 

  • Atalay I, Efe R, Öztürk M (2014) Ecology and classification of forests in Turkey. Procedia Soc Behav Sci 120:788–805

    Article  Google Scholar 

  • Bayındır N, İkinci N (2020a) The role of environmental variables on distribution of Potamogetonaceae species. Wetlands 40:125–133. https://doi.org/10.1007/s13157-019-01163-w

    Article  Google Scholar 

  • Bayındır N, İkinci N (2020b) Althenia orientalis (Potamogetonaceae) in Turkey: habitat conditions, morphology and anatomy. Commun Fac Sci Univ Ank Ser C Biol 29(2):243–253

    Google Scholar 

  • Bayındır N, İkinci N (2020c) Habitat preferences, distribution and anatomy of the clasping-leaved pondweeds of Turkey. Trakya Univ J Nat Sci. https://doi.org/10.23902/trkjnat.746096

  • Bruun HH, Moen J, Virtanen R, Grytnes JA, Oksanen L, Angerbjörn A (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46

    Article  Google Scholar 

  • Casha A, Mifsud S (2013) Althenia orientalis (Tzvelev) Garcia-Mur. & Talavera (Zanichelliaceae Dum.): an addition to the Maltese Flora (Central Mediterranean). Webbia 68:57–61. https://doi.org/10.1080/00837792.2013.807452

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E: Playmouth

  • Conde-Álvarez RM, Bañares-España E, Nieto-Caldera JM, Flores-Moya A, Figueroa FL (2011) Photosynthetic performance of the aquatic macrophyte Althenia orientalis to solar radiation along its vertical stems. Oecologia 166:853–862. https://doi.org/10.1007/s00442-011-1941-0

    Article  PubMed  Google Scholar 

  • Du Z, Wang Q (2016) Allopatric divergence of Stuckenia filiformis (Potamogetonaceae) on the Qinghai-Tibet Plateau and its comparative phylogeography with S. pectinata in China. Sci Rep 6:20883. https://doi.org/10.1038/srep20883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunham A, Archer SK, Davies SC, Burke LA, Mossman J, Pegg JR, Archer E (2018) Assessing condition and ecological role of deep-water biogenic habitats: glass sponge reefs in the Salish Sea. Mar Environ Res 141:88–99

    Article  CAS  Google Scholar 

  • Ergüner Y, Kumar J, Hoffman FM, Dalfes HN, Hargrove WW (2019) Mapping ecoregions under climate change: a case study from the biological ‘crossroads’ of three continents, Turkey. Landsc Ecol 34:35–50. https://doi.org/10.1007/s10980-018-0743-8

    Article  Google Scholar 

  • Fernández-Aláez C, Fernández-Aláez M, García-Criado MF, García-Girón J (2018) Environmental drivers of aquatic macrophyte assemblages in ponds along an altitudinal gradient. Hydrobiologia 812:79–98. https://doi.org/10.1007/s10750-016-2832-5

    Article  Google Scholar 

  • Foggi B, García Murillo PG, Grillas P, Hugot L (2011) Althenia orientalis. The IUCN Red List of Threatened Species 2011: e.T164375A5847002. Accessed 26 August 2019

  • García-Girón J, Fernández-Aláez C, Fernández-Aláez M, Nistal-García A (2018) Changes in climate, land use and local conditions drive macrophyte assemblages in a Mediterranean shallow lake. Limnetica 37:159–172

    Google Scholar 

  • Gecheva G, Cheshmedjiev S, Dimitrova-Dyulgerova I, Belkinova D, Mladenov R (2010) Implementation and Adaptation of Macrophyte Indication System: Assessment of Ecological Status of Rivers in Bulgaria According to the Water Framework Directive. Biotechnol Biotec Eq 24(sup1):171–180. https://doi.org/10.1080/13102818.2010.10817834

    Article  Google Scholar 

  • Grossheim AA (1928) Flora Kavkaza vol 1. Tiflis and Erivan, Map 65:88

    Google Scholar 

  • Gupta AK, Lansdown RV (2013) Potamogeton perfoliatus. The IUCN Red List of Threatened Species 2013: e.T164189A1029195. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T164189A1029195.en.

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Henderson PA, Seaby RMH (2007) Community analysis package 4.0 Pisces Conservation Ltd, Lymington

  • Hill MO (1979) DECORANA-a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Ithaca, NY. Ecology and Systematics, Cornell University, New York

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hinden H, Oertli B, Menetrey N, Sager L, Lachavanne JB (2005) Alpine pond biodiversity: what are the related environmental variables? Aquat Conserv 15:613–624

    Article  Google Scholar 

  • İkinci N, Bayındır N (2019) Distribution and richness of aquatic plants of Bolu Province (Turkey). Fresenius Environ Bull 28:244–256

    Google Scholar 

  • Jones IJ, Li W, Maberly SC (2003) Area, altitude and aquatic plant diversity. Ecography 26:411–420

    Article  Google Scholar 

  • Kadono Y (1982) Distribution and habitat of Japanese Potamogeton. Bot Mag Tokyo 95:63–76

    Article  Google Scholar 

  • Kaplan Z (2008) A taxonomic revision of Stuckenia (Potamogetonaceae) in Asia, with notes on the diversity and variation of the genus on a worldwide scale. Folia Geobot 43:159–234

    Article  Google Scholar 

  • Kaymakçı-Başaran A, Egemen Ö (2006) Orta Toros Dağlarındaki Eğrigöl’ün Su Kalitesi Parametrelerinin Araştırılması. Tarım Bilimleri Dergisi 12:137–143

    Google Scholar 

  • Lacoul P, Freedman B (2005) Physical and chemical limnology of 34 lentic Waterbodies along a tropical-to-Alpine altitudinal gradient in Nepal. Int Rev Hydrobiol 90:254–276

    Article  CAS  Google Scholar 

  • Lacoul P, Freedman B (2006) Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquat Bot 84:3–16

    Article  Google Scholar 

  • Lansdown RV (2011) Potamogeton acutifolius. The IUCN Red List of Threatened Species 2011: e.T167895A6408049. Accessed 26 Aug 2019

  • Lansdown RV (2017) Potamogeton nodosus. The IUCN Red List of Threatened Species 2017: e.T164227A67791533. https://doi.org/10.2305/IUCN.UK.2017-1.RLTS.T164227A67791533.en. Accessed 26 December 2019

  • Nowak AS, Nobis M (2012) Distribution patterns, floristic structure and habitat requirements of the alpine river plant community Stuckenietum amblyphyllae ass. nova (Potametea) in the Pamir Alai Mountains (Tajikistan). Acta Soc Bot Pol 81:101–108. https://doi.org/10.5586/asbp.2012.018

    Article  Google Scholar 

  • Önol B, Bozkurt D, Turuncoglu UU, Sen OL, Dalfes HN (2014) Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the eastern Mediterranean–Black Sea region. Clim Dyn 42:1949–1965. https://doi.org/10.1007/s00382-013-1966-7

    Article  Google Scholar 

  • Patrick CJ, Weller DE, Orth RJ, Wilcox DJ, Hannam MP (2018) Land use and salinity drive changes in SAV abundance and community composition. Estuar Coasts 41:85–100

    Article  Google Scholar 

  • Prausová R, Janová J, Adamac L (2011) Rescue of the critically endangered long-stalked pondweed (Potamogeton praelongus) in the Czech Republic. Acta Biol Slov 54:43–54

    Google Scholar 

  • Prausová RP, Sikorová P, Šafářová L (2014) Generative reproduction of long stalked pondweed (Potamogeton praelongus Wulfen) in the laboratory. Aquat Bot 120:268–274

    Article  Google Scholar 

  • Robionek A, Banaś K, Chmara R, Szmeja J (2015) The avoidance strategy of environmental constraints by an aquatic plant Potamogeton alpinus in running waters. Ecol Evol 5:3327–3337. https://doi.org/10.1002/ece3.1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimono A, Zhou H, Shen H, Hirota M, Ohtsuka T, Tang Y (2010) Patterns of plant diversity at high altitudes on the Qinghai-Tibetan Plateau. J Plant Ecol 3:1–7. https://doi.org/10.1093/jpe/rtq002

    Article  Google Scholar 

  • Smolders AJP, Lamers LPM, Roelofs JGM (2001) Aquatic macrophytes in assessment and monitoring of ecological quality. Monitoring and assessment of the ecological status of aquatic environments. TemaNord 563:23–31

    Google Scholar 

  • Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396

    Article  CAS  Google Scholar 

  • Van Geest GJ, Coops H, Roijackers RM, Buijse AD, Scheffer M (2005) Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes. J Appl Ecol 42:251–260

    Article  Google Scholar 

  • Vincent WJ (2001) Nutrient partitioning in the upper Canning River, Western Australia, and implications for the control of cyanobacterial blooms using salinity. Ecol Eng 16:359–371. https://doi.org/10.1016/S0925-8574(00)00121-X

    Article  Google Scholar 

  • Wiegleb G, Brux H, Herr W (1991) Human impact on the ecological performance of Potamogeton species in northwestern Germany. Vegetatio 97:161–172

    Article  Google Scholar 

  • Wubs ERJ, Fraaije RGA, de Groot GA, Erkens RHJ, Garssen AG, Kleyheeg AG, Raven BM, Soons MB (2016) Going against the flow: a case for upstream dispersal and detection of uncommon dispersal events. Freshw Biol 61:580–595. https://doi.org/10.1111/fwb.12736

    Article  CAS  Google Scholar 

  • Yu H, Qi W, Liu C, Yang L, Wang L, Lv T, Peng J (2019) Different stages of aquatic vegetation succession driven by environmental disturbance in the last 38 years. Water 11:1412. https://doi.org/10.3390/w11071412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Bolu Abant Izzet Baysal University Scientific Research Projects (no: 2015.03.01.895). ANG Foundation provided a three-year grant for the second author. We thank Prof. Dr. Muzaffer Dügel for the help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nursel İkinci.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İkinci, N., Bayındır, N. Spatial trends of Potamogetonaceae along an altitudinal gradient. Biologia 76, 23–32 (2021). https://doi.org/10.2478/s11756-020-00596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-020-00596-7

Keywords

Navigation