Skip to main content
Log in

The Synthesis of Maghemite Nanoparticles by Thermal Decomposition of Cryochemically Modified Iron(III) Acetylacetonate

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

Maghemite nanoparticles of 40 to 150 nm are obtained by the thermal decomposition of preliminarily cryochemically modified iron acetylacetonate. The composition and structure of the obtained particles and cryomodified precursor salt are determined by the X-ray diffraction (XRD) analysis, thermoanalytical methods (thermogravimetry, differential scanning calorimetry), infrared spectroscopy, and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hwang, S., Umar, A., Dar, G., Kim, S.H., and Badran, R., Sensor Appl.Sensor Lett., 2014, vol. 5, p. 97.

    Article  Google Scholar 

  2. Long, N.V., Teranishi, T., Yang, Y., Thi, C., Cao, Y., and Nogami, M., Int. J. Metall. Mater. Eng., 2015, vol. 1, p. 119.

    Article  Google Scholar 

  3. Vallabani, N.V.S. and Singh, S., Biotech, 2018, vol. 8, p. 279.

    Google Scholar 

  4. Fu, C. and Ravindra, N., Bioinspired,Biomimetic Nanobiomater., 2012, vol. 1, no. 4, p. 229.

    Article  CAS  Google Scholar 

  5. Leong, S.S., Yeap, S.P., and Lim, J.K., Interface Focus, 2016, vol. 6, no. 6, 20160048.

    Article  Google Scholar 

  6. Sumpter, B.G., Dave, P.N., and Chopda, L.V., J. Nanotech., 2014, 398569. https://www.hindawi.com/journals/ jnt/2014/398569.

  7. Arias, L.S., Pessan, J.P., Vieira, A.P.M., Lima, T.M.T., Delbem, A.C.B., and Monteiro, D.R., Antibiotics (Basel, Switz.), 2018, vol. 7, no. 2, p. 46

  8. Ansari, S.A.M.K., Ficiara, E., Ruffinatti, F.A., Stura, I., Argenziano, M., Abollino, O., Cavalli, R., Guiot, C., and D’Agata, F., Materials (Basel, Switz.), 2019, vol. 12, no. 3, p. 465.

  9. Rostovshchikova, T.N., Smirnov, V.V., Tsodikov, M.V., Bukhtenko, O.V., and Maksimov, Yu.V., Kiseleva, O.I., Pankratov, D.A, Russ. Chem. Bull., 2005, vol. 54, p. 1418.

    Article  CAS  Google Scholar 

  10. Rostovshchikova, T., Smirnov, V., Kiseleva, O., Yushcenko, V., Tzodikov, M., Maksimov, Y., Suzdalev, I., Kustov, L., and Tkachenko, O., Catal. Today, 2010, vol. 152, nos. 1–4, p. 48.

    Article  CAS  Google Scholar 

  11. Moodley, P., Scheijen, F.J.E., Niemantsverdriet, J.W., and Thune, P.C., Catal. Today, 2010, vol. 154, nos. 1–2, p. 142.

    Article  CAS  Google Scholar 

  12. Hugounenq, P., Levy, M., Alloyeau, D., Lartigue, L., Dubois, E., Cabuil, V., Ricolleau, C., Roux, S., Wilhelm, C., Gazeau, F., and Bazzi, R., J. Phys. Chem. C, 2012, vol. 116, p. 15702.

    Article  CAS  Google Scholar 

  13. Kurland, H.-D., Grabow, J., Staupendahl, G., Müller, F.A., Müller, E., Dutz, S., and Bellemann, M.E., J. Magn. Magn. Mater., 2009, vol. 321, p. 1381.

    Article  CAS  Google Scholar 

  14. Kurland, H.-D., Grabow, J., Dutz, S., Müller, E., Sierka, M., and Müller, F.A., Cryst. Growth Des., 2013, vol. 13, p. 4868.

    Article  Google Scholar 

  15. Timko, M., Molcan, M., Hashim, A., Skumiel, A., Müller, M., Gojzewski, H., Jozefczak, A., Kovac, J., Rajnak, M., Makowski, M., and Kopčanský, P., IEEE Trans. Magn., 2013, vol. 49, p. 250.

    Article  Google Scholar 

  16. McBain, S., Yiu, H., and Dobson, J., Int. J. Nanomed., 2008, vol. 3, p. 169.

    CAS  Google Scholar 

  17. Shabatina, T.I., Vernaya, O.I., Nuzhdina, A.V., Zvukova, N.D., Semenov, A.M., Shabatin, V.P., Lozinskii, V.I., and Mel’nikov, M.Ya., Nanotechnol. Russ., 2018, vol. 13, p. 182.

    Article  CAS  Google Scholar 

  18. Shabatina, T.I., Vernaya, O.I. Karlova, D.L., Nuzhdina, A.V., Shabatin, V.P., Semenov, A.M., Lozinskii, V.I., and Mel’nikov, M.Ya., Nanotechnol. Russ., 2018, vol. 13, p. 546.

    Article  CAS  Google Scholar 

  19. Vernaya, O.I., Shabatin, V.P., Semenov, A.M., Shabatina, T.I., and Mel’nikov, M.Ya., Moscow Univ. Chem. Bull. (Engl. Transl.), 2020, vol. 75, no. 4, p. 258.

  20. Shabatina, T.I., Vernaya, O.I., Shabatin, V.P., Melnikov, M.Y., Semenov, A.M., and Lozinsky, V.I., Appl. Sci., 2020, vol. 10, no. 1, 170.

    Article  CAS  Google Scholar 

  21. Diaz-Acosta, D., Baker, J., Cordes, W., and Pulay, P., J. Phys. Chem. A, 2001, vol. 105, p. 238.

    Article  CAS  Google Scholar 

  22. Cornell, R.M. and Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, New York: Wiley, 2003, p. 147.

    Book  Google Scholar 

  23. Kolida, Yu.Ya., Antonova, A.S., Kropacheva, T.N., and Kornev, V.I., Vestn. Udmurt. Univ., 2014, no. 4, p. 52.

  24. Kim, W., Suh, C.-Y., Cho, S.-W., Roh, K.-M., Kwon, H., Song, K., and Shon, I.-J., Talanta, 2012, vol. 94, p. 348.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 16-13-10365-П).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Vernaya.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Boltukhina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vernaya, O.I., Shumilkin, A.S., Shabatin, V.P. et al. The Synthesis of Maghemite Nanoparticles by Thermal Decomposition of Cryochemically Modified Iron(III) Acetylacetonate. Moscow Univ. Chem. Bull. 75, 265–268 (2020). https://doi.org/10.3103/S0027131420050089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131420050089

Keywords:

Navigation