Skip to main content
Log in

Modeling Thermal Gas Dynamic Processes of the Production of Silicon from Its Halides

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A procedure was developed to model the gas-dynamic and thermal conditions of the production of powdered silicon from silicon tetrachloride and tetrafluoride in a high-frequency induction plasma chemical reactor. The model includes a description of the turbulent flow of a mixture of ideal viscous compressible gases while taking into account the induction heating of the gas by conduction, convection, and radiation, as well as taking into account the effect of the electromagnetic force on plasma motion. The powdered particles form according to the results of the thermodynamic calculations, and the particle distribution in the flow is described by the diffusion mechanism. The results of modeling the conversion of volatile silicon chloride and fluoride in a swirl-stabilized high-frequency induction plasmatron are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sivoshinskaya, T.I., Grankov, I.V., Shabalin, Yu.P., and Ivanov, L.S., Pererabotka tetrakhlorida kremniya, obrazuyushchegosya v proizvodstve poluprovodnikovogo kremniya. Obzornaya informatsiya. Seriya: Proizvodstvo redkikh metallov i poluprovodnikovykh materialov. Vypusk 2 (Processing of Silicon Tetrachloride Formed in the Production of Semiconductor Silicon: Survey Information, Series in Production of Rare Metals and Semiconductor Materials, vol. 2), Moscow: Tsentr. Nauchno-Issled. Inst. Ekon. i Inf. Tsvetn. Metall., 1989.

  2. Taylor, P.A., Purification techniques and analytical methods for gaseous and metallic impurities in high-purity silane, J. Cryst. Growth, 1988, vol. 89, no. 1, pp. 28–38. https://doi.org/10.1016/0022-0248(88)90068-1

    Article  CAS  Google Scholar 

  3. Nuss, J.W. and Urry, G.J., J. Inorg. Nucl. Chem., 1964, vol. 26, p. 435.

    Article  CAS  Google Scholar 

  4. Sarma, K.R. and Rice, M.J., Jr., US Patent 4309259, 1982.

  5. Sarma, K.R. and Chanley, C.S., US Patent 4542004, 1985.

  6. Lepage, J.-L and Simon, G., Fr. Patent 2530638, 1985.

  7. Gromov, G.N., Bolgov, M.V., Muravitskii, S.A., et al., RF Patent 2350558, 2009.

  8. Lu, Z. and Zhang, W., Hydrogenation of silicon tetrachloride in microwave plasma, Chin. J. Chem. Eng., 2014, vol. 22, no. 2, pp. 227–233. https://doi.org/10.1016/S1004-9541(14)60025-2

    Article  CAS  Google Scholar 

  9. Wu, L., Ma, Z., He, A., and Wang, J., Studies on destruction of silicon tetrachloride using microwave plasma jet, J. Hazard. Mater., 2010, vol. 173, nos. 1–3, pp. 305–309. https://doi.org/10.1016/j.jhazmat.2009.08.095

    Article  CAS  PubMed  Google Scholar 

  10. Wu, L., Ma, Z., He, A., and Wang, J., Decomposition of silicon tetrachloride by microwave plasma jet at atmospheric pressure, Inorg. Mater., 2009, vol. 45, no. 12, article no. 1403. https://doi.org/10.1134/S0020168509120188

    Article  CAS  Google Scholar 

  11. Deryzemlia, A.M., Kryshtal, P.G., Malykhin, D.G., Radchenko, V.I., and Shirokov, B.M., Deposition of nanocrystalline silicon films into low frequency induction RF discharge, Probl. At. Sci. Technol., 2014, no. 1 (89), p. 147.

  12. Loginov, A.V. and Garbar, A.M., Silicon tetrafluoride: Properties, production, and applications, Vysokochist. Veshchestva, 1989, no. 5, p. 27.

  13. Tumanov, Yu.N., Plazmennye i vysokochastotnye protsessy polucheniya i obrabotki materialov v yadernom toplivnom tsikle: nastoyashchee i budushchee (Plasma and High-Frequency Processes for Production and Processing of Materials in the Nuclear Fuel Cycle: The Present and the Future), Moscow: Fizmatlit, 2003.

  14. Boone, J.E., Richards, D.M., and Bossier, J.A., US Patent 4309259, 1991.

  15. Kut’in, A.M., Polyakov, V.S., and Sennikov, P.G., Abstracts of Papers, V Mezhdunarodnaya konferentsiya “Kremnii 2008” (V International Conference “Silicon 2008”), Chernogolovka: Granitsa, 2008, p. 178.

  16. Djeridane, Y., Abramov, A., and Roca i Cabarrocas, P., Thin Solid Films, 2007, vol. 515, p. 7451.

    Article  CAS  Google Scholar 

  17. Kumar, S., Brenot, R., Kalache, B., Tripathi, V., Vanderhaghen, R., Drevillon, B., and Roca i Cabarrocas, P., Solid State Phenom., 2001, vols. 80–81, p. 237.

    Article  Google Scholar 

  18. Bruno, G., Capezzuto, P., and Cicala, G., RF glow discharge of SiF4-H2 mixtures: Diagnostics and modeling of the a-Si plasma deposition process, J. Appl. Phys., 1991, vol. 69, no. 10, p. 7256.

    Article  CAS  Google Scholar 

  19. Vodopyanov, A.V., Golubev, S.V., Mansfeld, D.A., Sennikov, P.G., and Drozdov, Yu.N., Experimental investigations of silicon tetrafluoride decomposition in ECR discharge plasma, Rev. Sci. Instrum., 2011, vol. 82, article no. 063503.

    Article  CAS  Google Scholar 

  20. Nagano, M., Mriya, T., et al., US Patent 0250764, 2004.

  21. Kornev, R.A., Shabarova, L.V., and Shishkin, A.I., Gas-dynamic and thermal processes in a high-frequency induction plasma torch with tangential stabilization of the gas flow, Theor. Found. Chem. Eng., 2017, vol. 51, no. 5, pp. 736–741. https://doi.org/10.1134/S0040579517050323

    Article  CAS  Google Scholar 

  22. Kornev, R.A., Sennikov, P.G., Shabarova, L.V., Shishkin, A.I., Drozdova, T.A., and Sintsov, S.V., Reduction of boron trichloride in atmospheric-pressure argon–hydrogen radiofrequency induction plasma, High Energy Chem., 2019, vol. 53, no. 3, pp. 246–253. https://doi.org/10.1134/S001814391903010X

    Article  CAS  Google Scholar 

  23. Matveev, I., Matveyeva, S., and Zverev, S., Experimental investigations of the APT-60 high-pressure inductively coupled plasma system on different plasma gases, IEEE Trans. Plasma Sci., 2014, vol. 42, no. 12, p. 3891. https://doi.org/10.1109/TPS.2014.2362414

    Article  CAS  Google Scholar 

  24. Bernardi, D., Colombo, V., Ghedini, E., and Mentrelli, A., Three-dimensional modeling of inductively coupled plasma torches, Pure Appl. Chem., 2005, vol. 77, no. 2, p. 359.

    Article  CAS  Google Scholar 

  25. Fathalizadeh, A., Pham, T., Mickelson, W., and Zettl, A., Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended-pressure, inductively-coupled thermal plasma, Nano Lett., 2014, vol. 14, p. 4881.

    Article  CAS  Google Scholar 

  26. Karengin, A.G., Plazmennye tekhnologii pererabotki veshchestv (Plasma Technologies for Substance Processing), Tomsk: Tomsk. Politekh. Univ., 2008, part 1.

  27. Mostaghimi, J. and Boulos, M.I., Two-dimensional electromagnetic field effects in induction plasma modelling, Plasma Chem. Plasma Process., 1989, vol. 9, no. 1, p. 25.

    Article  Google Scholar 

  28. Walas, S.M., Phase Equilibria in Chemical Engineering, Boston: Butterworth, 1985.

    Google Scholar 

  29. Xue, S., Proulx, P., and Boulos, M.I., Extended-field electromagnetic model for inductively coupled plasma, J. Phys. D: Appl. Phys., 2001, vol. 34, p. 1897.

    Article  CAS  Google Scholar 

  30. Grishin, Yu.M. and Myao, L., Numerical simulation of plasmadynamic processes in a technological high-frequency induction plasma generator with gas cooling, Nauka Obraz. MGTU im. N.E. Baumana, 2016, no. 05, p. 104.

  31. Rehmet, C., Cao, T. and Cheng, Y., Numerical study of Si nanoparticles formation by SiCl4 hydrogenation in RF plasma, Plasma Sources Sci. Technol., 2016, vol. 25, no. 2, article no. 025011.

    Article  Google Scholar 

  32. Ivanov, D.V. and Zverev, S.G., Mathematical simulation of processes in ICP/RF plasma torch for plasma chemical reactions, IEEE Trans. Plasma Sci., 2017, vol. 45, no. 12, p. 3125.

    Article  CAS  Google Scholar 

  33. Shabarova, L.V., Kornev, R.A., and Sennikov, P.G., Simulation of gas-dynamic and thermal processes in vortex-stabilized, inductively coupled argon–hydrogen plasma, High Energy Chem., 2018, vol. 52, no. 5, pp. 423–428. https://doi.org/10.1134/S0018143918050120

    Article  CAS  Google Scholar 

  34. Anderson, D.A., Tannehill, J.C., and Pletcher, R.H, Computational Fluid Mechanics and Heat Transfer, Series in Computational Methods in Mechanics and Thermal Sciences, New York: Hemisphere, 1984.

  35. Bystrov, Yu.A., Isaev, S.A., Kudryavtsev, N.A., and Leont’ev, A.I., Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v paketakh trub (Numerical Simulation of the Vortex Intensification of Heat Transfer in Tube Bundles), St. Petersburg: Sudostroenie, 2005.

  36. Vorob’ev, A.Kh., Diffuzionnye zadachi v khimicheskoi kinetike (Diffusion Problems in Chemical Kinetics), Moscow: Mosk. Gos. Univ., 2003.

  37. Murphy, A.B., Transport coefficients of hydrogen and argon–hydrogen plasmas, Plasma Chem. Plasma Process., 2000, vol. 20, no. 3, p. 279.

    Article  CAS  Google Scholar 

  38. Gamburg, D.Yu., Vodorod. Svoistva, poluchenie, khranenie, transportirovanie, primenenie (Hydrogen: Properties, Production, Storage, Transportation, and Applications), Moscow: Khimiya, 1989.

  39. Bretsznajder, S., Własności gazów i cieczy, Series in Inżynieria Chemiczna, Warszawa: Wydawnictwa Naukowo-Techniczne, 1962.

  40. Abramov, A.N., Plekhovich, A.D., Kut’in, A.M., Yashkov, M.V., and Guryanov, A.N., Analysis of mullite formation in the core glass of a chromium-doped aluminosilicate fiber, Inorg. Mater., 2018, vol. 54, no. 9, pp. 940–948. https://doi.org/10.1134/S0020168518090017

    Article  CAS  Google Scholar 

  41. Kourkkari, P. and Pajarre, R., A Gibbs energy minimization method for constrained and partial equilibria, Pure Appl. Chem., 2011, vol. 83, p. 1243.

    Article  Google Scholar 

  42. Iorish, V.S., Belov, G.V., and Yungman, V.S., The IVTAN TERMO software package for Windows and its use in applied thermodynamic analysis, Preprint of the Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 1998, no. 8-415.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Shabarova.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabarova, L.V., Plekhovich, A.D., Kut’in, A.M. et al. Modeling Thermal Gas Dynamic Processes of the Production of Silicon from Its Halides. Theor Found Chem Eng 54, 631–640 (2020). https://doi.org/10.1134/S0040579520040260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520040260

Keywords:

Navigation