Skip to main content
Log in

Electrooxidation of Sulfite Ions on a Composite Carbon-Containing Electrode Modified with Submicron Gold Particles

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Regularities of the electrooxidation of sulfite ions in an alkaline medium (рН ≥ 8; LiClO4, KNO3, Na2SO4, NaOH) on a composite carbon-containing electrode modified by submicron (300 nm or smaller) gold particles are studied using cyclic voltammetry. The electrocatalytic nature of the analytical signal is substantiated; a scheme of the oxidation process is proposed. A procedure for the preliminary electrochemical treatment of the modified electrode, ensuring an increase in the substrate oxidation current and consisting in the anodic polarization of the electrode in the potential range 0.9–1.4 V (Ag/AgCl reference electrode) in a supporting electrolyte is optimized. The essence of activation is an increase in the surface area of gold particles participating in the catalytic generation/reduction cycle of gold (hydr)oxides and providing an increase in the value of the analytical signal. The proposed approach ensures a significant increase of the sensitivity of the voltammetric method for determining sulfite ions. The concentration dependence of the analytical signal is linear in the concentration range of \({\text{SO}}_{3}^{{2 - }}\)-ions 1 × 10–7–2 × 10–4 М (limit of detection 5.5 × 10–8 M). The results of the determination of sulfite ions in wines, beer, and juices indicate a higher accuracy of the voltammetric method compared to the standard iodometric procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Vallero, D., Fundamentals of Air Pollution, New York: Academic, 2014.

    Google Scholar 

  2. TR TS (Technical Regulation of the Customs Union) 029/2012: Safety Requirements for Food Additives, Flavors, and Processing Aids, Moscow, 2012. http://old.gost.ru/wps/portal/pages/main. Accessed December 27, 2019.

  3. GOST (State Standard) 5644-75: Anhydrous Sodium Sulfite. Specifications, Moscow: Izd. Standartov, 2004.

    Google Scholar 

  4. Sulfur Dioxide and Sulfites (Addendum): Fifty-First Meeting of the Joint FAO/WHO Expert Committee on Food Additives, WHO Food Additives Series no. 42, Geneva: World Health Organization, 1999.

  5. Evaluation of Certain Food Additives: Sixty-Ninth Report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series no. 952, Geneva: World Health Organization, 2009.

  6. Codex Alimentarius Commission: General Standard for the Labelling of Prepackaged Foods, 1991 (CODEX STAN 1-1985, Rev. 1-1991). http://www.codexalimentarius.net/download/standards/32/CXS_001e.pdf. Accessed November 18, 2019.

  7. AOAC 990.28 Sulfites in Foods, Optimized Monier–Williams Method, AOAC Official Methods of Analysis, Sec. 47.3.43, 2000.

  8. GOST (State Standard) 25555.5-2014: Fruit and Vegetable Products. Methods for Determination of Sulfur Dioxide Content, Moscow: Izd. Standartov, 2014.

  9. GOST (State Standard) 32115-2013: Production Alcohol and Corresponding Raw Materials. Method for Determination of Free and Total Sulfur Dioxide, Moscow: Standartinform, 2014.

  10. Shenderyuk, V.V., Stashko, A.V., and Bychkovskaya, A.A., Tr., Atl. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr.,Novaya Ser., 2017, vol. 1, no. 2, p. 32.

    Google Scholar 

  11. Isaac, A., Livingstone, C., Wain, A.J., Compton, R.G., and Davis, J., TrAC,Trends Anal. Chem., 2006, vol. 25, no. 6, p. 589.

    Article  CAS  Google Scholar 

  12. Rawal, R. and Pundir, C.S., Biochem. Eng. J., 2013, vol. 71, p. 30.

    Article  CAS  Google Scholar 

  13. Molinero-Abad, B., Alonso-Lomillo, M., Domínguez-Renedo, O., and Arcos-Martínez, M.J., Anal. Chim. Acta, 2014, vol. 812, p. 41.

    Article  CAS  Google Scholar 

  14. Romão Sartori, E., Campanhã Vicentini, F., and Fatibello-Filho, O., Talanta, 2011, vol. 87, p. 235.

    Article  Google Scholar 

  15. Suzuki, M., Lee, S., Fujii, K., Arikawa, Y., Kubo, I., Kanagawa, T., Mikami, E., and Karube, I., Anal. Lett., 1992, vol. 25, no. 6, p. 973.

    Article  CAS  Google Scholar 

  16. Pournaghi-Azar, M.H., Hydarpour, M., and Dastangoo, H., Anal. Chim. Acta, 2003, vol. 497, p. 133.

    Article  CAS  Google Scholar 

  17. Lowinsohn, D., Alipazaga, M.V., Coichev, N., and Bertotti, M., Microchim. Acta, 2004, vol. 144, p. 57.

    Article  CAS  Google Scholar 

  18. Raoof, J.B., Ojani, B., and Karimi-Maleh, H., Int. J. Electrochem. Sci., 2007, vol. 2, p. 257.

    CAS  Google Scholar 

  19. Ardakani, M.M., Habibollahi, F., Zare, H.R., and Naeimi, H., Int. J. Electrochem. Sci., 2008, vol. 3, p. 1236.

    CAS  Google Scholar 

  20. Dadamos, T. and Teixeira, M., Electrochim. Acta, 2009, vol. 54, p. 4552.

    Article  CAS  Google Scholar 

  21. Alamo, L.S., Tangkuaram, T., and Satienperakul, S., Talanta, 2010, vol. 81, p. 1793.

    Article  CAS  Google Scholar 

  22. Ensafi, A.A. and Karimi-Maleh, H., Int. J. Electrochem. Sci., 2010, vol. 5, p. 392.

    CAS  Google Scholar 

  23. Majidi, M.R., Asadpour-Zeynali, K., Shahmoradi, K., and Shivaeefar, Y., J. Chin. Chem. Soc., 2010, vol. 57, p. 391.

    Article  CAS  Google Scholar 

  24. Vélez, J.H., Muena, J.P., Aguirre, M.J., Ramírez, G., and Herrera, F., Int. J. Electrochem. Sci., 2012, vol. 7, p. 3167.

    Google Scholar 

  25. Amatatongchai, M., Sroysee, W., Chairam, S., and Nacapricha, D., Talanta, 2015, vol. 133, p. 134.

    Article  CAS  Google Scholar 

  26. Beitollahi, H., Mahmoudi-Moghaddam, H., Tajik, S., and Jahani, S., Microchem. J., 2019, vol. 147, p. 590.

    Article  CAS  Google Scholar 

  27. Makhotkina, O. and Kilmartin, P.A., Anal. Chim. Acta, 2010, vol. 668, p. 155.

    Article  CAS  Google Scholar 

  28. Zelinsky, A.G. and Pirogov, B.Ya., Electrochim. Acta, 2017, vol. 231, p. 371.

    Article  CAS  Google Scholar 

  29. Burke, L.D. and Ryan, T.G., Electrochim. Acta, 1992, vol. 37, p. 1363.

    Article  CAS  Google Scholar 

  30. Burke, L.D. and Nugent, P.F., Gold Bull., 1997, vol. 30, p. 43.

    Article  CAS  Google Scholar 

  31. Orlik, M. and Galus, Z., in Inorganic Electrochemistry. Encyclopedia of Electrochemistry, vol. 7b, Bard, A.J., Stratman, M., Scholz, F., and Pickett, C.J., Eds., Weinheim: Wiley, 2006, p. 839.

  32. Burke, L.D. and Hurley, L.M., J. Solid State Electrochem., 2002, vol. 6, p. 101.

    Article  CAS  Google Scholar 

  33. Manikandan, V.S., Liu, Z., and Chen, A., J. Electroanal. Chem., 2018, vol. 819, p. 524.

    Article  CAS  Google Scholar 

  34. O’Brien, J.A., Hinkley, J.T., Donne, S.W., and Lindquist, S.-E., Electrochim. Acta, 2010, vol. 55, p. 573.

    Article  Google Scholar 

  35. Zelinsky, A.G., Electrochim. Acta, 2016, vol. 188, p. 727.

    Article  CAS  Google Scholar 

  36. Cai, X., Lin, C., Foord, J.S., and Compton, R.G., Electroanalysis, 2019, vol. 31, p. 1783.

    Article  CAS  Google Scholar 

  37. Felmy, A.R., Girvin, D., and Jenne, E.A., MINTEQ: Calculating Aqueous Geochemical Equilibria, Washington, DC: US Environ. Protect. Agency, 1984.

    Google Scholar 

  38. Glasstone, S. and Hickling, A., J. Chem. Soc., 1933, p. 829.

  39. Seo, E.T. and Sawyer, D.T., Electrochim. Acta, 1965, vol. 10, p. 239.

    Article  CAS  Google Scholar 

  40. Quijada, C., Morallón, E., Vázquez, J.L., and Berlouis, L.E.A., Electrochim. Acta, 2000, vol. 46, p. 651.

    Article  CAS  Google Scholar 

  41. Perevezentseva, D.O., Korshunov, A.V., Gorchakov, E.V., Bimatov, V.I., and Phedorov, I.E., Curr. Anal. Chem., 2017, vol. 13, p. 225.

    Article  CAS  Google Scholar 

  42. Pletcher, D., Greff, R., Peat, R., Peter, L.M., and Robinson, J., Instrumental Methods in Electrochemistry, Oxford: Woodhead, 2001.

    Book  Google Scholar 

  43. Soderberg, J.N., Co, A.C., Sirk, A.H.C., and Birss, V.I., J. Phys. Chem. B, 2006, vol. 110, p. 10401.

    Article  CAS  Google Scholar 

  44. Neta, P. and Huie, R.E., Environ. Health Perspect., 1985, vol. 64, p. 209.

    Article  CAS  Google Scholar 

  45. Doerffel, K., Statistik in der analytischen Chemie (Statistics in Analytical Chemistry), Leipzig: Grundstoffindustrie, 1990, 5 ed.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Korshunov.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovaleva, S.V., Aksinenko, O.S. & Korshunov, A.V. Electrooxidation of Sulfite Ions on a Composite Carbon-Containing Electrode Modified with Submicron Gold Particles. J Anal Chem 75, 1348–1357 (2020). https://doi.org/10.1134/S1061934820080080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820080080

Keywords:

Navigation