Skip to main content
Log in

High Performance Circularly Polarized MIMO Antenna with Polarization Independent Metamaterial

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a high performance circularly polarized multiple input multiple output microstrip patch antenna which is suitable for current high data rate requirements. Circular polarization has been achieved by dual feeding the signals in phase quadrature to the patch antenna. A polarization independent metamaterial has been designed. The designed metamaterial is used to enhance the gain of the antenna and used as a superstrate of this patch antenna. Using metamaterial superstrate, a gain as high as 13.6 dBi with a bandwidth of 15.4% has been achieved at 11 GHz. The structure has been fabricated and the simulated results are in good agreement with the measured results. Circular polarized antenna also reduces the delay spread due to multipath environment and provides high latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mak, K. M., Lai, H. W., Luk, K. M., & Chan, C. H. (2014). Circularly polarized patch antenna for future 5G mobile phones. IEEE Access, 2, 1521–1529.

    Article  Google Scholar 

  2. Outerelo, D. A., Alejos, A. V., Sanchez, M. G., & Isasa, M. V. (2015). Microstrip antenna for 5G broadband communications: Overview of design issues. In IEEE international symposium on antennas and propagation, Vancouver, Canada (pp. 2443–2444).

  3. Monserrat, J. F., Mange, G., Braun, V., Tullberg, H., Zimmermann, G., & Bulakc, O. I. (2015). METIS research advances towards the 5G mobile and wireless system definition. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-015-0302-9.

  4. Tullberg, H., Popovski, P., Serrano, D. G., Fertl, P., Höglund, A., et al. (2015). The METIS 5G system concept. In European conference on network and communication, Paris, France.

  5. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. Communications Magazine, 52(5), 26–35.

    Article  Google Scholar 

  6. Ashraf, N., Haraz, O., Muhammad, A. A., & Alshebeili, S. (2015). 28/38-GHz dual-band millimeter wave SIW array antenna with EBG structures for 5G applications. In IEEE conference on information and communication technology research, Abu Dhabi (pp. 5–8).

  7. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.

    Article  Google Scholar 

  8. Xu, H. X., Wang, G. M., & Cai, T. (2014). Miniaturization of 3-D anistropic zero-refractive-index metamaterials with application to directive emissions. IEEE Transactions on Antennas and Propagation, 62, 3141–3149.

    Article  Google Scholar 

  9. Xu, H. X., Wang, G. M., Tao, Z., & Cui, T. J. (2014). High-directivity emissions with flexible beam numbers and beam directions using gradient-refractive-index fractal metamaterial. Scientific Reports, 4, 5744.

    Article  Google Scholar 

  10. Kumar, A., & Vishwakarma, D. K. (2013). High performance metamaterial patch antenna. Microwave and Optical Technology Letters, 55, 409–413.

    Article  Google Scholar 

  11. Kumar, A., Vishwakarma, D. K., Mohan, J., & Gupta, H. O. (2014). Investigation of grid metamaterial and EBG structures and its application to patch antenna. International Journal of Microwave and Wireless Technology, 30, 705–712.

    Google Scholar 

  12. Kumar, A., Mohan, J., & Gupta, H. O. (2016). Novel metamaterials with their applications to microstrip antenna. International Journal of Microwave and Optical Technology, 11, 188–195.

    Google Scholar 

  13. Gao, X. J., Cai, T., & Zhu, L. (2016). Enhancement of gain and directivity for microstrip antenna using negative permeability metamaterial. International Journal of Electronics and Communications, 70, 880–885.

    Article  Google Scholar 

  14. Soltani, S., & Murch, R. D. (2015). A compact planar printed MIMO antenna design. IEEE Transactions on Antennas and Propagation, 63, 1140–1149.

    Article  MathSciNet  Google Scholar 

  15. Ghosh, C. K. (2016). A compact 4-channel microstrip MIMO antenna with reduced mutual coupling. AEU-International Journal of Electronics and Communication, 70, 873–879.

    Article  Google Scholar 

  16. Han, M., & Choi, J. (2011). Small-size printed MIMO antenna for next generation mobile handset application. Microwave and Optical Technology Letters, 53, 348–352.

    Article  Google Scholar 

  17. Szabó, Z., Park, G. H., Hedge, R., & Li, E. P. (2010). A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Transactions on Microwave Theory and Techniques, 58, 2646–2653.

    Article  Google Scholar 

  18. Chen, H., Ran, L., Chen, H., Zhang, X., Chen, K., Grzegorczyk, T. M., et al. (2004). Left-handed metamaterials composed of only S-shaped resonators. Physics Review E, 70, 057605.

    Article  Google Scholar 

  19. Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N., & Vincent, P. (2002). A metamaterial for directive emission. Physical Review Letters, 89, 213902.

    Article  Google Scholar 

  20. Kock, W. E. (1946). Metal-lens antenna. In Proceeding of IRE (pp. 828–836).

  21. Thaysen, J., & Jakobsen, K. B. (2006). Envelope correlation in (N, N) MIMO antenna array from scattering parameter. Microwave and Optical Technology Letters, 48, 832–834.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Agrawal, T. High Performance Circularly Polarized MIMO Antenna with Polarization Independent Metamaterial. Wireless Pers Commun 116, 3205–3216 (2021). https://doi.org/10.1007/s11277-020-07843-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07843-9

Keywords

Navigation