Skip to main content
Log in

Mathematical Model of Water Alternated Polymer Injection

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Chemical enhanced oil recovery (EOR) methods include the injection of aqueous polymer solutions slugs driven by water. Polymer solutions increase water viscosity, decreasing the water phase mobility and improving oil recovery through better sweep efficiency. In this paper, we present the water alternated polymer EOR technique, which is based on the injection of successive polymer slugs alternated by water slugs. The mathematical problem is composed by two conservation equations: one of them is related to the water volume and the other one to the polymer mass. We assume that the polymer may be adsorbed by the rock, and the relation between the concentration in the aqueous solution and the solid is governed by a Langmuir type adsorption isotherm. The water viscosity is a function of the polymer concentration in water. The 2 × 2 system of hyperbolic equations was decoupled by introducing a potential function instead of time as an independent variable. The water alternated polymer injection is represented by a varying boundary condition. The analytical solution presents interactions between waves of different families. It is shown that the polymer slugs always catch up each other along the porous media generating a single slug. As a consequence, the water slugs will disappear. This solution is new and was compared to numerical results with close agreement. It also can be used for the selection of the most suitable enhanced oil recovery technique for a particular oil field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bedrikovetsky, P.G.: Displacement of oil by a slug of an active additive forced by water through a stratum. Fluid Dyn. 17(3), 409–417 (1982)

    Article  Google Scholar 

  • Bedrikovetsky, P.G.: Mathematical Theory of Oil and Gas Recovery. With Applications to Ex-USSR Oil and Gas Fields. Springer Netherlands, Amsterdam (1993)

    Book  Google Scholar 

  • Borazjani, S., Bedrikovetsky, P., Farajzadeh, R.: Analytical solutions of oil displacement by a polymer slug with varying salinity. J. Petrol. Sci. Eng. 140, 28–40 (2016a)

    Article  Google Scholar 

  • Borazjani, S., Roberts, A.J., Bedrikovetsky, P.: Splitting in systems of PDEs for two-phase multicomponent flow in porous media. Appl. Math. Lett. 53, 25–32 (2016b)

    Article  Google Scholar 

  • Borazjani, S., Behr, A., Genolet, L., Van Der Net, A., Bedrikovetsky, P.: Effects of fines migration on low-salinity waterflooding: analytical modelling. Transp. Porous Media 116, 213–249 (2017)

    Article  Google Scholar 

  • Darcy, H.: Les fontaines publiques de la ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  • Fayers, F.J., Perrine, R.L.: Mathematical description of detergent flooding in oil reservoirs. Paper SPE 1132 presented at the SPE Fall Meeting of the Society of Petroleum Engineers of AIME, Houston, 5–8 Oct (1958)

  • Hatzignatiou, D.G., Norris, U.L., Stavlandb, A.: Core-scale simulation of polymer flow through porous media. J. Petrol. Sci. Eng. 108, 137–150 (2013)

    Article  Google Scholar 

  • Hatzignatiou, D.G., Moradi, H., Stavlandb, A.: Polymer flow through water- and oil-wet porous media. J. Hydrodyn. 27(5), 748–762 (2015)

    Article  Google Scholar 

  • Helfferich, F.G.: Theory of multicomponent, multiphase displacement in porous media. SPE J. 21(1), 51–62 (1981)

    Google Scholar 

  • Johansen, T., Winther, R.: The solution of Riemann problem for a hyperbolic system of conservation laws modeling polymer flooding. SIAM J. Math. Anal. 19(3), 541–566 (1988)

    Article  Google Scholar 

  • Johansen, T., Winther, R.: The Riemann problem for multicomponent polymer flooding. SIAM J. Math. Anal. 20(04), 908–929 (1989)

    Article  Google Scholar 

  • Khorsandi, S., Qiao, C., Johns, R.T.: Displacement efficiency for low-salinity polymer flooding including wettability alteration. SPE J. 22(02), 417–430 (2017)

    Article  Google Scholar 

  • Lake, L.W., Helfferich, F.: Cation exchange in chemical flooding: part 2—the effect of dispersion, cation exchange, and polymer/surfactant adsorption on chemical flood environment. SPE J. 18(06), 435–444 (1978)

    Google Scholar 

  • Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  • Littmann, W.: Polymer Flooding. Elsevier Science Publishers B.V., New York (1988)

    Google Scholar 

  • Logan, J.D.: An Introduction to Nonlinear Partial Differential Equations, 2nd edn. Wiley, Hoboken, NJ (2008)

    Google Scholar 

  • Pires, A.P., Bedrikovetsky, P.G., Shapiro, A.A.: Analytical modeling for two-phase EOR processes: splitting between hydrodynamics and thermodynamics. Paper SPE 89919 presented at the SPE annual technical conference and exhibition, Houston, 26–29 Sept (2004)

  • Pires, A.P., Bedrikovetsky, P.G.: Analytical modeling of 1d n-component miscible displacement of ideal fluids. Paper SPE 94855 presented at the SPE Latin American and Caribbean petroleum engineering conference, Rio de Janeiro, 20–23 June (2005)

  • Pires, A.P., Bedrikovetsky, P.G., Shapiro, A.A.: A splitting technique for analytical modelling of two-phase multicomponent flow in porous media. J. Petrol. Sci. Eng. 51, 54–67 (2005)

    Article  Google Scholar 

  • Pope, G.A.: The application of fractional flow theory to enhanced oil recovery. SPE J. 20(3), 191–205 (1980)

    Google Scholar 

  • Pope, G.A., Lake, L.W., Helfferich, F.G.: Cation exchange in chemical flooding: part 1—basic theory without dispersion. SPE J. 18(06), 418–434 (1978)

    Google Scholar 

  • Rhee, H.K., Aris, R., Amundson, N.R.: First-Order Partial Differential Equations, vol. 1. Prentice-Hall, Hoboken, NJ (1989a)

    Google Scholar 

  • Rhee, H.K., Aris, R., Amundson, N.R.: First-Order Partial Differential Equations, vol. 2. Prentice-Hall, Hoboken, NJ (1989b)

    Google Scholar 

  • Sekhar, T.R., Sharma, V.D.: Interaction of shallow water waves. Stud. Appl. Math. 121(01), 1–25 (2008)

    Article  Google Scholar 

  • Sekhar, T.R., Sharma, V.D.: Wave interactions for the pressure gradient equations. Methods Appl. Anal. 17(2), 165–178 (2010)

    Google Scholar 

  • Shen, C.: Wave interactions and stability of the Riemann solutions for the chromatography equations. J. Math. Anal. Appl. 365, 609–618 (2010)

    Article  Google Scholar 

  • Smoller, J.: Shock Wave and Reaction–Diffusion Equation, 2nd edn. Springer-Verlag, New York (1994)

    Book  Google Scholar 

  • Sorbie, K.S.: Polymer-Improved Oil Recovery. Blackie, Florida (1991)

    Book  Google Scholar 

  • Sun, M.: Interactions of elementary waves for the Aw-Rascle model. SIAM J. Appl. Math. 69(6), 1542–1558 (2009)

    Article  Google Scholar 

  • Thiele, M., Batycky, R., Pollitzer, S., Clemens, T.: Polymer-flood modeling using streamlines. SPE Reserv. Eval. Eng. 13(2), 313–322 (2010)

    Article  Google Scholar 

  • Torrealba, V.A., Hoteit, H.: Improved polymer flooding injectivity and displacement by considering compositionally-tuned slugs. J. Petrol. Sci. Eng. 178, 14–26 (2019)

    Article  Google Scholar 

  • Vicente, B.J., Priimenko, V.I., Pires, A.P.: Semi-analytical solution for a hyperbolic system modeling 1D polymer slug flow in porous media. J. Petrol. Sci. Eng. 115, 102–109 (2014)

    Article  Google Scholar 

  • Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    Google Scholar 

  • Zarand, M.A.F., Pillai, K.: Spontaneous imbibition of liquid in glass fiber wicks, part II: validation of a diffuse-front model. Transp. Phenomena Fluid Mech. 64(01), 306–315 (2017)

    Google Scholar 

  • Zhang, T., Yang, H., He, Y.: Interactions between two rarefaction waves for the pressure-gradient equations in the gas dynamics. Appl. Math. Comput. 199, 231–241 (2008)

    Google Scholar 

  • Zhao, S., Pu, W., Wei, B., Xu, X.: A comprehensive investigation of polymer microspheres (PMs) migration in porous media: EOR implication. Fuel 235, 249–258 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo P. Pires.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The shock path resulting from the interaction between two simple waves is described in Rhee et al. (1989a) when the rarefaction waves arise from the coordinate axis. Here, the same approach is used to build the trajectory of shocks when the rarefaction waves arise from any curve. Considering that along the path shock \(x\) and \(\varphi\) are functions of \(U^{ - }\) and \(U^{ + }\), we obtain the following expression to the shock path:

$$\frac{{{\text{d}}\varphi }}{{{\text{d}}x}} = \frac{{F\left( {U^{ + } ,0} \right) - F\left( {U^{ - } ,0} \right)}}{{U^{ + } - U^{ - } }} = \frac{{\left( {{{\partial \varphi } \mathord{\left/ {\vphantom {{\partial \varphi } {\partial U^{ - } }}} \right. \kern-0pt} {\partial U^{ - } }}} \right)\left( {{{{\text{d}}U^{ - } } \mathord{\left/ {\vphantom {{{\text{d}}U^{ - } } {{\text{d}}U^{ + } }}} \right. \kern-0pt} {{\text{d}}U^{ + } }}} \right) + \left( {{{\partial \varphi } \mathord{\left/ {\vphantom {{\partial \varphi } {\partial U^{ + } }}} \right. \kern-0pt} {\partial U^{ + } }}} \right)}}{{\left( {{{\partial x} \mathord{\left/ {\vphantom {{\partial x} {\partial U^{ - } }}} \right. \kern-0pt} {\partial U^{ - } }}} \right)\left( {{{{\text{d}}U^{ - } } \mathord{\left/ {\vphantom {{{\text{d}}U^{ - } } {{\text{d}}U^{ + } }}} \right. \kern-0pt} {{\text{d}}U^{ + } }}} \right) + \left( {{{\partial x} \mathord{\left/ {\vphantom {{\partial x} {\partial U^{ + } }}} \right. \kern-0pt} {\partial U^{ + } }}} \right)}} = \tilde{\omega }\left( {U^{ - } ,U^{ + } } \right)$$
(63)

Equation (63) can be rewritten as

$$\frac{{{\text{d}}U^{ - } }}{{{\text{d}}U^{ + } }} = - \frac{{\tilde{\omega }\left( {{{\partial x} \mathord{\left/ {\vphantom {{\partial x} {\partial U^{ + } }}} \right. \kern-0pt} {\partial U^{ + } }}} \right) - \left( {{{\partial \varphi } \mathord{\left/ {\vphantom {{\partial \varphi } {\partial U^{ + } }}} \right. \kern-0pt} {\partial U^{ + } }}} \right)}}{{\tilde{\omega }\left( {{{\partial x} \mathord{\left/ {\vphantom {{\partial x} {\partial U^{ - } }}} \right. \kern-0pt} {\partial U^{ - } }}} \right) - \left( {{{\partial \varphi } \mathord{\left/ {\vphantom {{\partial \varphi } {\partial U^{ - } }}} \right. \kern-0pt} {\partial U^{ - } }}} \right)}}$$
(64)

At an arbitrary point \(\left( {x,\varphi } \right)\) on the shock path we have two characteristics intersecting, one from the curve \(\varphi_{A} \left( x \right)\) and another from the curve \(\varphi_{B} \left( x \right)\) (Fig. 19). These characteristic curves are straight lines:

$$\varphi = \omega^{ + } \left( {x - \xi^{ + } } \right) + \eta^{ + } \quad {\text{and}}\quad \varphi = \omega^{ - } \left( {x - \xi^{ - } } \right) + \eta^{ - }$$
(65)

where \(\omega^{ \pm } = F^{\prime}_{U} \left( {U^{ \pm } ,0} \right)\), \(\left( {\xi^{ + } = \xi^{ + } \left( {U^{ + } } \right),\eta^{ + } = \eta^{ + } \left( {U^{ + } } \right)} \right)\) and \(\left( {\xi^{ - } = \xi^{ - } \left( {U^{ - } } \right),\eta^{ - } = \eta^{ - } \left( {U^{ - } } \right)} \right)\) are points on the curves \(\varphi_{A} \left( x \right)\) and \(\varphi_{B} \left( x \right)\), respectively.

Fig. 19
figure 19

Shock path arising from the interaction of two rarefaction waves of the same family

From Eq. (65) we write \(\varphi\) and \(x\) as functions of \(U^{ - }\) and \(U^{ + }\):

$$x = \frac{{\eta^{ - } - \eta^{ + } + \omega^{ + } \xi^{ + } - \omega^{ - } \xi^{ - } }}{{\omega^{ + } - \omega^{ - } }}\quad {\text{and}}\quad \varphi = \frac{{\omega^{ + } \eta^{ - } - \omega^{ - } \eta^{ + } + \omega^{ - } \omega^{ + } \left( {\xi^{ + } - \xi^{ - } } \right)}}{{\omega^{ + } - \omega^{ - } }}$$
(66)

Deriving \(x\) and \(\varphi\) with respect to \(U^{ + }\) and \(U^{ - }\) and substituting into Eq. (64), we obtain an ordinary differential equation relating \(U^{ - }\) and \(U^{ + }\):

$$\frac{{{\text{d}}U^{ - } }}{{{\text{d}}U^{ + } }} = \frac{{\tilde{\omega } - \omega^{ - } }}{{\tilde{\omega } - \omega^{ + } }}\frac{{\left( {\omega^{ + } - \omega^{ - } } \right)\left( {\eta^{\prime + } - \omega^{ + } \xi^{\prime + } } \right) + \left[ {\eta^{ - } - \eta^{ + } + \left( {\xi^{ + } - \xi^{ - } } \right)\omega^{ - } } \right]\omega^{\prime + } }}{{\left( {\omega^{ + } - \omega^{ - } } \right)\left( {\eta^{\prime - } - \omega^{ - } \xi^{\prime - } } \right) + \left[ {\eta^{ - } - \eta^{ + } + \left( {\xi^{ + } - \xi^{ - } } \right)\omega^{ + } } \right]\omega^{\prime - } }}$$
(67)

where \(\omega^{\prime \pm } = F^{\prime\prime}_{U} \left( {U^{ \pm } ,0} \right)\), \(\eta^{\prime \pm } = {{{\text{d}}\eta^{ \pm } } \mathord{\left/ {\vphantom {{{\text{d}}\eta^{ \pm } } {{\text{d}}U^{ \pm } }}} \right. \kern-0pt} {{\text{d}}U^{ \pm } }}\) and \(\xi^{\prime \pm } = {{d\xi^{ \pm } } \mathord{\left/ {\vphantom {{d\xi^{ \pm } } {{\text{d}}U^{ \pm } }}} \right. \kern-0pt} {{\text{d}}U^{ \pm } }}\).

The solution of Eq. (67) allows the determination of \(U^{ - }\) for an specified \(U^{ + }\). Replacing \(U^{ - }\) and \(U^{ + }\) in Eq. (66), we obtain the shock path.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente, B.J., Priimenko, V.I. & Pires, A.P. Mathematical Model of Water Alternated Polymer Injection. Transp Porous Med 135, 431–456 (2020). https://doi.org/10.1007/s11242-020-01482-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01482-1

Keywords

Navigation