Skip to main content
Log in

Gamma and conversion electron spectroscopy using GABRIELA

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

GABRIELA (Gamma Alpha Beta Recoil Investigations with the Electromagnetic Analyzer) is a detection system installed at the focal plane of the SHELS (Separator for Heavy Elements Spectroscopy) recoil separator for gamma and internal conversion electron spectroscopy of heavy and superheavy nuclei. GABRIELA has recently been upgraded. The characteristics of the new setup are presented using the Geant4 Monte Carlo simulation toolkit and validated against experimental results. The impact of summing on the gamma-ray and electron detection efficiencies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study belong to the GABRIELA collaboration and may be available upon request.]

References

  1. K.J. Moody, Synthesis of superheavy elements, in The Chemistry of Superheavy Elements, 2nd edn., ed. by M. Schädel, D. Shaughnessy (Springer-Verlag, Berlin, Heidelberg, 2014), pp. 1–82

    Google Scholar 

  2. R.-D. Herzberg, Nuclear structure of superheavy elements, in The Chemistry of Superheavy Elements, 2nd edn., ed. by M. Schädel, D. Shaughnessy (Springer-Verlag, Berlin, Heidelberg, 2014), pp. 83–134

    Chapter  Google Scholar 

  3. Y.T. Oganessian, V.K. Utyonkov, Nucl. Phys. A 944, 62 (2015)

    Article  ADS  Google Scholar 

  4. Ch. Theisen et al., Nucl. Phys. A 944, 333 (2015)

    Article  ADS  Google Scholar 

  5. K.-H. Schmidtet et al., Phys. Lett. B 168, 39 (1986)

    Article  ADS  Google Scholar 

  6. E. Paul et al., Phys. Rev. C 51, 78 (1995)

    Article  ADS  Google Scholar 

  7. M. Asai et al., Nucl. Phys. A 944, 308 (2015)

    Article  ADS  Google Scholar 

  8. K. Hauschild et al., Nucl. Instrum. Methods A 560, 388 (2006)

    Article  ADS  Google Scholar 

  9. A.G. Popeko et al., Nucl. Instrum. Methods B 376, 140 (2016)

    Article  ADS  Google Scholar 

  10. A. Lopez-Martens et al., Phys. Rev. C 74, 044303 (2006)

    Article  ADS  Google Scholar 

  11. K. Rezynkina et al., Phys. Rev. C 97, 054332 (2018)

    Article  ADS  Google Scholar 

  12. A. Lopez-Martens et al., Eur. Phys. J. A 32, 245 (2007)

    Article  ADS  Google Scholar 

  13. A. Lopez-Martens et al., Nucl. Phys. A 852, 15 (2011)

    Article  ADS  Google Scholar 

  14. K. Hauschild et al., Phys. Rev. C 78, 021302 (2008)

    Article  ADS  Google Scholar 

  15. K. Rezynkina, PhD Thesis. Université Paris Saclay (2016)

  16. G. Duchêne et al., Nucl. Instrum. Methods A 432, 90 (1999)

    Article  ADS  Google Scholar 

  17. A.V. Isaev et al., Instr. Exp. Tech. 54(1), 37 (2011)

    Article  Google Scholar 

  18. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  19. Steffen Hauf et al., IEEE Trans. Nucl. Sci. 60(4), 2966 (2013)

    Article  ADS  Google Scholar 

  20. M.R. Bhat, Evaluated nuclear structure data file (ENSDF), in Nuclear Data for Science and Technology, ed. by S.M. Qaim (Research Reports in Physics. Springer, Berlin, Heidelberg, 1992)

  21. L.G. Sarmiento et al., Nucl. Instrum. Methods A 667, 26 (2012)

    Article  ADS  Google Scholar 

  22. L.G. Sarmiento, EPJ Web Conf. 131, 05004 (2016)

    Article  Google Scholar 

  23. R.B. Firestone, V.S. Shirley, C.M. Baglin, F.Y.F. Chu, J. Zipkin, Table of Isotopes (Wiley, New York, 1996)

    Google Scholar 

  24. J.F. Ziegler et al., Nucl. Instrum. Methods B 268, 1818 (2010)

    Article  ADS  Google Scholar 

  25. F.P. Heßberger et al., Eur. Phys. J. A 30, 561 (2006)

    Article  ADS  Google Scholar 

  26. R. Chakma et al., Decay Spectroscopy of \(^{255}\)Rf and \(^{251}\)No (in preparation)

  27. K. Hauschild et al., Phys. Rev. C 77, 047305 (2008)

    Article  ADS  Google Scholar 

  28. I. Rezanka et al., Phys. Rev. C 10, 766 (1974)

    Article  ADS  Google Scholar 

  29. J.F.C. Cocks, JUROSPHERE Collaboration, J. Phys. G Nucl. Part. Phys. 25, 839 (1999)

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Projects Nos. 18-52-15004), the French national Research Agency (Projects Nos. ANR-06-BLAN- 0034-01 and ANR-12-BS05-0013) and the IN2P3-JINR collaboration Agreement No. 04-63.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chakma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakma, R., Hauschild, K., Lopez-Martens, A. et al. Gamma and conversion electron spectroscopy using GABRIELA. Eur. Phys. J. A 56, 245 (2020). https://doi.org/10.1140/epja/s10050-020-00242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00242-5

Navigation