Skip to main content
Log in

Matching of Models of the Internal Structure and Thermal Regime of Partially Differentiated Titan with Gravity Field

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The problem of matching models of the internal structure of partially differentiated Titan with experimentally measured values of Love number k2 (Iess et al., 2012; Durante et al., 2019) according to results of studying the gravity field of Titan based on flights of the Cassini spacecraft is discussed. The values of k2 obtained presumably point to the presence of large masses of liquid (ocean) in the interior of Titan. However, there are no reliable data about the thickness of the outer ice crust and internal (underice) ocean. In this work, constraints on the heat flow, structure of the water-ice shell, and composition of the Titan ocean which are necessary for matching the calculated (model) and experimental Love numbers are considered. The energy release due to ice crystallization in the ocean is estimated. Estimates for the model Love numbers and maximal surface heat flows for the L/LL chondritic composition of the rock–iron component of Titan are obtained with allowance for the radiogenic energy, as well as for the energy of ice crystallization in the ocean due to the satellite cooling: F ~ 5.8 mW/m2, k2 = 0.53, the thickness of the ice Ih shell \({{H}_{{{{{\text{I}}}_{h}}}}}\) ~ 100 km, and the ocean depth HW ~ 280 km. Model Love numbers k2 agree with experimental ones (Iess et al., 2012) in the presence of the ocean. To match the model (k2 ≥ 0.55) and recently refined values of Love numbers (k2)D = 0.616 ± 0.067 (Durante et al., 2019), it is necessary to satisfy the constraints on the magnitude of the surface heat flow F ≥ 6.3 mW/m2, which corresponds to a water ocean thickness HW ≥ 310 km under the ice Ih shell with a thickness \({{H}_{{{{{\text{I}}}_{h}}}}}\) ≤ 90 km. The effect of heat flow variations, ice crust thickness, and water–ammonia ocean density on model values of Love numbers is analyzed and the negligible influence of the NH3 admixture in the ocean on the k2 value is demonstrated. The moment of inertia for models of partially differentiated Titan has constraints: I* ≤ 0.342 at k2 ≥ 0.56.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Alibert, Y. and Mousis, O., Formation of Titan in Saturn’s subnebula: Constraints from Huygens probe measurements, Astron. Astrophys., 2007, vol. 465, pp. 1051–1060. https://doi.org/10.1051/0004-6361:20066402

    Article  ADS  Google Scholar 

  2. Anderson, J.D., Lau, E.L., Sjogren, W.L., Schunert, G., and Moore, W.B., Gravitational constraints on the internal structure of Ganymede, Nature, 1996, vol. 384, no. 6609, pp. 541–543.

    Article  ADS  Google Scholar 

  3. Anderson, J.D., Jacobson, R.A., McElrath, T.P., Moore, W.B., Schubert, G., and Thomas, P.C., Shape, mean radius, gravity field, and interior structure of Callisto, Icarus, 2001, vol. 153, no. 1, pp. 157–161.

    Article  ADS  Google Scholar 

  4. Baland, R.M., Van Hoolst, T., Yseboodt, M., and Karatekin, Ö., Titan’s obliquity as evidence of a subsurface ocean?, Astron. Astrophys., 2011, vol. 530, id. A141.

  5. Baland, R.M., Tobie, G., Lefevre, A., and Van Hoolst, T., Titan’s internal structure inferred from its gravity field, shape, and rotation state, Icarus, 2014, vol. 237, pp. 29–41. https://doi.org/10.1016/j.icarus.2014.04.007

    Article  ADS  Google Scholar 

  6. Barr, A.C., Citron, R.I., and Canup, R.M., Origin of a partially differentiated Titan, Icarus, 2010, vol. 209, pp. 858–862. https://doi.org/10.1016/j.icarus.2010.05.028

    Article  ADS  Google Scholar 

  7. Beuthe, M., Tidal Love numbers of membrane worlds: Europa, Titan, and Co, Icarus, 2015, vol. 258, pp. 239–266. https://doi.org/10.1016/j.icarus.2015.06.008

    Article  ADS  Google Scholar 

  8. Braukmüller, N., Wombacher, F., Hezel, D.C., Escoube, R., and Münker, C., The chemical composition of carbonaceous chondrites: Implications for volatile element depletion, complementarity and alteration, Geochim. Cosmochim. Acta, 2018, vol. 239, pp. 17–48. https://doi.org/10.1016/j.gca.2018.07.023

    Article  ADS  Google Scholar 

  9. Castillo-Rogez, J.C. and Lunine, J.I., Evolution of Titan’s rocky core constrained by Cassini observations, Geophys. Rev. Lett., 2010, vol. 37, id. L20205. https://doi.org/10.1029/2010GL044398

  10. Chen, E., Nimmo, F., and Glatzmaier, G., Tidal heating in icy satellite oceans, Icarus, 2014, vol. 229, pp. 11–30.

    Article  ADS  Google Scholar 

  11. Choukroun, M. and Grasset, O., Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics, J. Chem. Phys., 2010, vol. 133, no. 14, id. 144502. https://doi.org/10.1063/1.3487520

  12. Choukroun, M., Grasset, O., Tobie, G., and Sotin, C., Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on Titan, Icarus, 2010, vol. 205, pp. 581–593.

    Article  ADS  Google Scholar 

  13. Czechowski, L. and Witek, P., Comparison of early evolutions of Mimas and Enceladus, Acta Geophys., 2015, vol. 63, no. 3, pp. 900–921.

    Article  ADS  Google Scholar 

  14. Deschamps, F., Mousis, O., Sanchez-Valle, C., and Lunine, J.I., The role of methanol on the crystallization of Titan’s primordial ocean, Astrophys. J., 2010, vol. 724, pp. 887–894.

    Article  ADS  Google Scholar 

  15. Dorofeeva, V.A. and Ruskol, E.L., On the thermal history of Saturn’s satellites Titan and Enceladus, Sol. Syst. Res., 2010, vol. 44, no. 3, pp. 192–201. https://doi.org/10.1134/S0038094610030032

    Article  ADS  Google Scholar 

  16. Dougherty, A.J., Bartholet, Z.T., Chumsky, R.J., Delano, K.C., Huang, X., and Morris, D.K., The liquidus temperature for methanol-water mixtures at high pressure and low temperature, with application to Titan, J. Geophys. Res. Planets, 2018, vol. 123, pp. 3080–3087.

    Article  ADS  Google Scholar 

  17. Dunaeva, A.N., Antsyshkin, D.V., and Kuskov, O.L., Phase diagram of H2O: Thermodynamic functions of the phase transitions of high-pressure ices, Sol. Syst. Res., 2010, vol. 44, no. 3, pp. 202–222. https://doi.org/10.1134/S0038094610030044

    Article  ADS  Google Scholar 

  18. Dunaeva A.N., Kronrod V.A., and Kuskov O.L., Models of Titan with water-ice shell, rock-ice mantle, and constraints on the rock-iron component composition, Dokl. Earth Sci., 2014, vol. 454, no. 1, pp. 89–93.

    Article  ADS  Google Scholar 

  19. Dunaeva A.N., Kronrod V.A., and Kuskov O.L., Physico-chemical models of the internal structure of partially differentiated Titan, Geochem. Int., 2016, vol. 54, no, 1, pp. 27–47.

    Article  Google Scholar 

  20. Durante, D., Hemingway, D.J., Racioppa, P., Iess, L., and Stevenson, D.J., Titan’s gravity field and interior structure after Cassini, Icarus, 2019, vol. 326, pp. 123–132.

    Article  ADS  Google Scholar 

  21. Fortes, A.D., Titan’s internal structure and the evolutionary consequences, Planet. Space Sci., 2012, vol. 60, pp. 10–17.

    Article  ADS  Google Scholar 

  22. Fulchignoni, M., Ferri, F., Angrilli, F., Ball, A.J., Bar-Nun, A., Barucci, M.A., Bettanini, C., Bianchini, G., Borucki, W., Colombatti, G., Coradini, M., Coustenis, A., Debei, S., Falkner, P., Fanti, G., Flamini, E., Gaborit, V., Grard, R., Hamelin, M., Harri, A.M., Hathi, B., Jernej, I., Leese, M.R., and Lehto, A., Lion Stoppato, P.F., Lopez-Moreno, J.J., Makinen, T., McDonnell, J.A.M., McKay, C.P., Molina-Cuberos, G., Neubauer, F.M., Pirronello, V., Rodrigo, R., Saggin, B., Schwingenschuh, K., Seiff, A., Simões, F., Svedhem, H., Tokano, T., Towner, M.C., Trautner, R., Withers, P., Zarnecki, J.C., In situ measurements of the physical characteristics of Titan’s environment, Nature, 2005, vol. 438, pp. 785–791.

    Article  ADS  Google Scholar 

  23. Gagnon, R.E., Kiefte, H., Clouter, M.J., and Whalley, E., Acoustic velocities and densities of polycrystalline ice Ih, II, III, V, and VI by Brillouin spectroscopy, J. Chem. Phys., 1990, vol. 92, no. 3, pp. 1909–1914. https://doi.org/10.1063/1.458021

    Article  ADS  Google Scholar 

  24. Grasset, O., Sotin, C., and Deschamps, F., On the internal structure and dynamics of Titan, Planet. Space Sci., 2000, vol. 48, pp. 617–636. https://doi.org/10.1016/S0032-0633(00)00039-8

    Article  ADS  Google Scholar 

  25. Hay, H.C. and Matsuyama, I., Nonlinear tidal dissipation in the subsurface oceans of Enceladus and other icy satellites, Icarus, 2019, vol. 319, pp. 68–85. https://doi.org/10.1016/j.icarus.2018.09.019

    Article  ADS  Google Scholar 

  26. Helgerud, M.B., Waite, W.F., Kirby, S.H., and Nur, A., Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate, J. Geophys. Res. Solid Earth, 2009, vol. 114, id. B02212. https://doi.org/10.1029/2008JB006132

  27. Hemingway, D., Nimmo, F., Zebker, H., and Iess, L., A rigid and weathered ice shell on Titan, Nature, 2013, vol. 500, no. 7464, pp. 550–552. https://doi.org/10.1038/nature12400

    Article  ADS  Google Scholar 

  28. Iess, L., Rappaport, N.J., Jacobson, R.A., Racioppa, P., Stevenson, D.J., Tortora, P., Armstrong, J.W., and Asmar, S.W., Gravity field, shape, and moment of inertia of Titan, Science, 2010, vol. 327, no. 5971, pp. 1367–1369. https://doi.org/10.1126/science.1182583

    Article  ADS  Google Scholar 

  29. Iess, L., Jacobson, R.A., Ducci, M., Stevenson, D.J., Lunine, J.I., Armstrong, J.W., Asmar, S.W., Racioppa, P., Rappaport, N.J., and Tortora, P., The tides of Titan, Science, 2012, vol. 337, no. 6093, pp. 457–459. https://doi.org/10.1126/science.1219631

    Article  ADS  Google Scholar 

  30. Jacobson, R.A., Antreasian, P.G., Bordi, J.J., Criddle, K.E., Ionasescu, R., Jones, J.B., Mackenzie, R.A., Meek, M.C., Parcher, D., Pelletier, F.J., Owen, W.M., Jr., Roth, D.C., Roundhill, I.M., and Stauch, J.R., The gravity field of the Saturnian system from satellite observations and spacecraft tracking data, Astron. J., 2006, vol. 132, no. 6, pp. 2520–2526.

    Article  ADS  Google Scholar 

  31. Journaux, B., Kalousová, K., Sotin, C. et al., Large ocean worlds with high-pressure ices, Space Sci. Rev., 2020, vol. 216, art. no. 7. https://doi.org/10.1007/s11214-019-0633-7

  32. Kirk, R.L. and Stevenson, D.J., Thermal evolution of a differentiated Ganymede and implications for surface features, Icarus, 1987, vol. 69, no. 1, pp. 91–134. https://doi.org/10.1016/0019-1035(87)90009-1

    Article  ADS  Google Scholar 

  33. Kronrod, V.A. and Kuskov, O.L., Chemical differentiation of the Galilean Satellites of Jupiter: 1. Structure of the ice-water shell of Callisto, Geochem. Int., 2003, no. 9, pp. 881–896.

  34. Kronrod, V.A. and Kuskov, O.L., Chemical differentiation of the Galilean satellites of Jupiter: 4. Isochemical models for the compositions of Io, Europa, and Ganymede, Geochem. Int., 2006, vol. 44, pp. 529–546. https://doi.org/10.1134/S0016702906060012

    Article  Google Scholar 

  35. Kuskov, O.L. and Kronrod, V.A., Internal structure of Europa and Callisto, Icarus, 2005, vol. 177, pp. 550–569. https://doi.org/10.1016/j.icarus.2005.04.014

    Article  ADS  Google Scholar 

  36. Kuskov, O.L., Galimzyanov, R.F., Kalinin, V.A., and Bubnova, N., Construction of the thermal equation of state of solids (periclase, coesite, stishovite) based on bulk modulus data and calculation of coesite – stishovite boundary, Geokhimiya, 1982, no. 7, pp. 984–1001.

  37. Kuskov, O.L., Dorofeeva, V.A., Kronrod, V.A., and Makalkin, A.B., Sistemy Yupitera i Saturna. Formirovanie, sostav i vnutrennee stroenie krupnykh sputnikov (Jupiter and Saturn Systems. Formation, Composition, and Internal Structure of Major Satellites), Moscow: LKI, 2009.

  38. Kuskov, O.L., Kronrod, V.A., Prokofyev, A.A., and Pavlenkova, N.I., Petrological–geophysical models of the internal structure of the lithospheric mantle of the Siberian craton, Petrology, 2014, vol. 22, pp. 17–44. https://doi.org/10.1134/S0869591114010056

    Article  Google Scholar 

  39. Lefevre, A., Tobie, G., Choblet, G., and Cadek, O., Structure and dynamics of Titan’s outer icy shell constrained from Cassini data, Icarus, 2014, vol. 237, pp. 16–28. https://doi.org/10.1016/j.icarus.2014.04.006

    Article  ADS  Google Scholar 

  40. Leitner, M.A. and Lunine, J.I., Modeling early Titan’s ocean composition, Icarus, 2019, vol. 333, pp. 61–70. https://doi.org/10.1016/j.icarus.2019.05.008

    Article  ADS  Google Scholar 

  41. Leliwa-Kopystyński, J., Maruyama, M., and Nakajima, T., The water-ammonia phase diagram up to 300 MPa: Application to icy satellites, Icarus, 2002, vol. 159, no. 2, pp. 518–528. https://doi.org/10.1006/icar.2002.6932

    Article  ADS  Google Scholar 

  42. Lindal, G.F., Wood, G.E., Hotz, H.B., Sweetnam, D.N., Eshleman, V.R., and Tyler, G.L., The atmosphere of Titan – An analysis of the Voyager 1 radio occultation measurements, Icarus, 1983, vol. 53, pp. 348–363. https://doi.org/10.1016/0019-1035(83)90155-0

    Article  ADS  Google Scholar 

  43. Lorenz, R.D., Thermodynamics of geysers: application to Titan, Icarus, 2002, vol. 156, no. 1, pp. 176–183. https://doi.org/10.1006/icar.2001.6779

    Article  ADS  Google Scholar 

  44. Makalkin, A.B. and Dorofeeva, V.A., Accretion disks around Jupiter and Saturn at the stage of regular satellite formation, Sol. Syst. Res., 2014, vol. 48, no. 1, pp. 62–78. https://doi.org/10.1134/S0038094614010067

    Article  ADS  Google Scholar 

  45. Mitri, G. and Showman, A.P., Thermal convection in ice I shells of Titan and Enceladus, Icarus, 2008, vol. 193, pp. 387–396. https://doi.org/10.1016/j.icarus.2007.07.016

    Article  ADS  Google Scholar 

  46. Mitri, G., Showman, A.P., Lunine, J.I., and Lopes, R.M.C., Resurfacing of Titan by ammonia-water cryomagma, Icarus, 2008, vol. 196, pp. 216–224. https://doi.org/10.1016/j.icarus.2008.02.024

    Article  ADS  Google Scholar 

  47. Mitri, G., Meriggiola, R., Hayes, A., Lefevre, A., Tobie, G., Genova, A., and Zebker, H., Shape, topography, gravity anomalies and tidal deformation of Titan, Icarus, 2014, vol. 236, pp. 169–177. https://doi.org/10.1016/j.icarus.2014.03.018

    Article  ADS  Google Scholar 

  48. Molodenskii, M.S., Elastic tides, free nutation, and issues of the Earth’s structure, Tr. Geofiz. Inst. Akad. Nauk SSSR, 1953, vol. 19, p. 146.

    Google Scholar 

  49. Mueller, S. and McKinnon, W.B., Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution, Icarus, 1988, vol. 76, no. 3, pp. 437–464. https://doi.org/10.1016/0019-1035(88)90014-0

    Article  ADS  Google Scholar 

  50. Nimmo, F. and Bills, B.G., Shell thickness variations and the long wavelength topography of titan, Icarus, 2010, vol. 208, pp. 896–904. https://doi.org/10.1016/j.icarus.2010.02.020

    Article  ADS  Google Scholar 

  51. Nimmo, F. and Pappalardo, R.T., Ocean worlds in the outer solar system, J. Geophys. Res. Planets, 2016, vol. 121, pp. 1378–1399. https://doi.org/10.1002/2016JE005081

    Article  ADS  Google Scholar 

  52. O’Rourke, J.G. and Stevenson, D.J., Stability of ice/rock mixtures with application to a partially differentiated Titan, Icarus, 2014, vol. 227, pp. 67–77. https://doi.org/10.1016/j.icarus.2013.09.010

    Article  ADS  Google Scholar 

  53. Raevskii, S.N., Gudkova, T.V., Kuskov O.L., and Kronrod, V.A., On reconciling the models of the interior structure of the Moon with gravity data, Izv. Phys. Solid Earth, 2015, vol. 51, no. 1, pp. 134–142.

    Article  ADS  Google Scholar 

  54. Rodnikova, M.N., A new approach to the mechanism of solvophobic interactions, J. Mol. Liq., 2007, vol. 136, no. 3, pp. 211–213. https://doi.org/10.1016/j.molliq.2007.08.003

    Article  Google Scholar 

  55. Ruiz, J., The stability against freezing of an internal liquid-water ocean in Callisto, Nature, 2001, vol. 412, no. 6845, pp. 409–411. https://doi.org/10.1038/35086506

    Article  ADS  Google Scholar 

  56. Sohl, F., Sears, W.D., and Lorenz, R.D., Tidal dissipation on Titan, Icarus, 1995, vol. 115, no. 2, pp. 278–294. https://doi.org/10.1006/icar.1995.1097

    Article  ADS  Google Scholar 

  57. Sohl, F., Hussmann, H., Schwentker, B., Spohn, T., and Lorenz, R.D., Interior structure models and tidal Love numbers of Titan, J. Geophys. Res. Planets, 2003, vol. 108, no. E12. https://doi.org/10.1029/2003JE002044

  58. Sohl, F., Solomonidou, A., Wagner, F.W., Coustenis, A., Hussmann, H., and Schulze-Makuch, D., Structural and tidal models of titan and inferences on cryovolcanism, J. Geophys. Res. Planets, 2014, vol. 119, no. 5, pp. 1013–1036. https://doi.org/10.1002/2013JE004512

    Article  ADS  Google Scholar 

  59. Sotin, C. and Tobie, G., Internal structure and dynamics of the large icy satellites, C. R. Phys., 2004, vol. 5, pp. 769–780. https://doi.org/10.1016/j.crhy.2004.08.001

    Article  ADS  Google Scholar 

  60. Spohn, T. and Schubert, G., Oceans in the icy Galilean satellites of Jupiter?, Icarus, 2003, vol. 161, no. 2, pp. 456–467. https://doi.org/10.1016/S0019-1035(02)00048-9

    Article  ADS  Google Scholar 

  61. Takeuchi, H., Saito, M., and Kobayshi, N., Study of shear velocity distribution in the upper mantle by mantle Rayleigh and Love waves, J. Geophys. Res., 1962, vol. 67, pp. 2831–2839.

    Article  ADS  Google Scholar 

  62. Tobie, G., Choukroun, M., Grasset, O., Le Mouelic, S., Lunine, J.I., Sotin, C., Bourgeois, O., Gautier, D., Hirtzig, M., Lebonnois, S., and Le Corre, L., Evolution of Titan and implications for its hydrocarbon cycle, Philos. Trans. R. Soc. A, 2009, vol. 367, pp. 617–631. https://doi.org/10.1098/rsta.2008.0246

    Article  ADS  Google Scholar 

  63. Tobie, G., Gautier, D., and Hersant, F., Titan’s bulk composition constrained by Cassini-Huygens: implication for internal outgassing, Astrophys. J., 2012, vol. 752, no. 2, p. 125. https://doi.org/10.1088/0004-637X/752/2/125

    Article  ADS  Google Scholar 

  64. Tobie, G., Lunine, J.I., Monteux, J., Mousis, O., and Nimmo, F., The origin and evolution of Titan, in Titan: Interior, Surface, Atmosphere and Space Environment, Muller-Wordag, I., Griffith, C.A., Lellouch, E., and Cravens, T.E., Eds., Cambridge: Cambridge Univ. Press, 2014, pp. 29–262.

    Google Scholar 

  65. Wagner, W. and Pruß, A., The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem., 2002, vol. 31, pp. 387–535. https://doi.org/10.1063/1.1461829

    Article  Google Scholar 

  66. Wasson, J.T. and Kallemeyn, G.W., Compositions of chondrites, Philos. Trans. R. Soc. London, Ser. A, 1988, vol. 325, no. 1587, pp. 535–544. https://doi.org/10.1098/rsta.1988.0066

    Article  Google Scholar 

  67. Zharkov, V.N. and Molodenskii, S.M., On corrections for the dynamic shear modulus for Love numbers, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1977, no. 5, pp. 17–21.

  68. Zharkov, V.N. and Molodenskii, S.M., Corrections for the dynamic shear modulus for Love numbers and the Chandler period, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1979, no. 6, pp. 88–89.

Download references

Funding

The work on matching the models of Titan’s internal structure with data on the gravitational field was carried out within the scope of the State Contract for the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, under partial support of the Russian Foundation for Basic Research, project no. 18-05-00685.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kronrod.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kronrod, V.A., Dunaeva, A.N., Gudkova, T.V. et al. Matching of Models of the Internal Structure and Thermal Regime of Partially Differentiated Titan with Gravity Field. Sol Syst Res 54, 405–419 (2020). https://doi.org/10.1134/S0038094620050044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094620050044

Keywords:

Navigation