Skip to main content
Log in

Number of Near-Earth Objects and Formation of Lunar Craters over the Last Billion Years

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

We compare the number of lunar craters larger than 15 km across and younger than 1.1 Ga to the estimates of the number of craters that could have been formed for 1.1 Ga if the number of near-Earth objects and their orbital elements during that time were close to the corresponding current values. The comparison was performed for craters over the entire lunar surface and in the region of the Oceanus Procellarum and maria on the near side of the Moon. In these estimates, we used the values of collision probabilities of near-Earth objects with the Moon and the dependences of the crater diameters on the impactor sizes. According to the estimates made by different authors, the number density of known Copernican craters with diameters D ≥ 15 km in mare regions is at least double the corresponding number for the remaining lunar surface. Our estimates do not contradict the growth in the number of near-Earth objects after probable catastrophic fragmentations of large main-belt asteroids, which may have occurred over the recent 300 Ma; however, they do not prove this increase. Particularly, they do not conflict with the inference made by Mazrouei et al. (2019) that 290 Ma ago the frequency of collisions of near-Earth asteroids with the Moon increased by 2.6 times. The number of Copernican lunar craters with diameters not smaller than 15 km is probably higher than that reported by Mazrouei et al. (2019). For a probability of a collision of an Earth-crossing object (ECO) with the Earth in a year equaled to 10–8 , our estimates of the number of craters agree with the model, according to which the number densities of the 15-km Copernican craters for the whole lunar surface would have been the same as that for mare regions if the data by Losiak et al. (2015) for D < 30 km were as complete as those for D > 30 km. With this collision probability of ECOs with the Earth and for this model, the cratering rate may have been constant over the recent 1.1 Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Asteroidno-kometnaya opasnost’: vchera, segodnya, zavtra (Asteroid and Comet Hazard: Past, Present, and Future), Shustov, B.M. and Rykhlova, L.V., Eds., Moscow: Fizmatlit, 2010.

    Google Scholar 

  2. Bazilevskii, A.T., Ivanov, B.A., Florenskii, K.P., et al., Udarnye kratery na Lune i planetakh (Impact Craters on the Moon and Planets), Sadovskii, M.A., Ed., Moscow: Nauka, 1983.

    Google Scholar 

  3. Bottke, W.F., Nolan, M.C., Greenberg, R., and Kolvoord, R.A., Collisional lifetimes and impact statistics of near-Earth asteroids, in Hazards due to Comets and Asteroids, Gehrels, T., Ed., Tucson: Univ. Arizona Press, 1994, pp. 337–357.

    Google Scholar 

  4. Bottke, W.F., Love, S.G., Tytell, D., and Glotch, T., Interpreting the elliptical crater populations on Mars, Venus, and the Moon, Icarus, 2000, vol. 145, pp. 108–121.

    Article  ADS  Google Scholar 

  5. Bottke, W., Vokrouhlicky, D., and Nesvorny, D., An asteroid breakup 160 Myr ago as the probable source of the K/T impactor, Nature, 2007, vol. 449, pp. 48–53.

    Article  ADS  Google Scholar 

  6. Brown, P., Spalding, R.E., ReVelle, D.O., Tagliaferri, E., and Worden, S.P., The flux of small near-Earth objects colliding with the Earth, Nature, 2002, vol. 420, pp. 294–296.

    Article  ADS  Google Scholar 

  7. Brown, P.G., Assink, J.D., Astiz, L., Blaauw, R., Boslough, M.B., Borovička, J., Brachet, N., Brown, D., Campbell-Brown, M., Ceranna, L., Cooke, W., de Groot-Hedlin, C., Drob, D.P., Edwards, W., Evers, L.G., Garces, M., Gill, J., Hedlin, M., Kingery, A., and Laske, G., A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors, Nature, 2013, vol. 503, no. 7475, pp. 238–241.

    Article  ADS  Google Scholar 

  8. Carry, B., Density of asteroids, Planet. Space Sci., 2012, vol. 73, pp. 98–118. https://doi.org/10.1016/j.pss.2012.03.009

    Article  ADS  Google Scholar 

  9. Collins, G.S., Melosh, H.J., and Marcus, R.A., Earth impact effects program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth, Meteorit. Planet. Sci., 2005, vol. 40, pp. 817–840.

    Article  ADS  Google Scholar 

  10. Croft, S.K., The excavation stage of basin formation: A qualitative model, in Multiring Basins, Schultz, P.H. and Merrill, R.B., Eds., New York: Pergamon, 1981, pp. 207–225.

    Google Scholar 

  11. Croft, S.K., The scaling of complex craters, J. Geophys. Res., 1985, vol. 90, no. S02, pp. C828–C842.

    Article  Google Scholar 

  12. Davison, T.M., Collins, G.S., Elbeshausen, D., Wunnemann, K., and Kearsley, A., Numerical modeling of oblique hypervelocity impacts on strong ductile targets, Meteorit. Planet. Sci., 2011, vol. 46, no. 10, pp. 1510–1524.

    Article  ADS  Google Scholar 

  13. Dienes, J.K. and Walsh, J.M., Theory of impact: Some general principles and the method of Eulerian codes in High Velocity Impact Phenomena, Kinslow, R., Ed., New York: Academic Press, 1970, pp. 45–104.

    Google Scholar 

  14. Dones, L., Gladman, B., Melosh, H.J., Tonks, W.B., Levison, H.F., and Duncan, M., Dynamical lifetimes and final fates of small bodies: Orbit integrations vs Opik calculations, Icarus, 1999, vol. 142, no. 2, pp. 509–524.

    Article  ADS  Google Scholar 

  15. Drolshagen, E., Ott, T., Koschny, D., Drolshagen, G., Dchmidt, A.K., and Poppe, B., Velocity distribution of larger meteoroids and small asteroids impacting earth, Planet. Space Sci., 2020, vol. 184, id. 104869.

  16. Dvorak, R. and Pilat-Lohinger, E., On the dynamical evolution of the Atens and the Apollos, Planet. Space Sci., 1999, vol. 47, pp. 665–677.

    Article  ADS  Google Scholar 

  17. Elbeshausen, D., Wünnemann, K., and Collins, G.S., Scaling of oblique impacts in frictional targets: implications for crater size and formation mechanisms, Icarus, 2009, vol. 204, pp. 716–731.

    Article  ADS  Google Scholar 

  18. Elbeshausen, D., Wünnemann, K., and Collins, G.S., The transition from circular to elliptical impact craters, J. Geophys. Res.: Planets, 2013, vol. 118, pp. 2295–2309.

    Article  ADS  Google Scholar 

  19. Emel’yanenko, V.V. and Naroenkov, S.A., Dynamical features of hazardous near-Earth objects, Astrophys. Bull., 2015, vol. 70, no. 3, pp. 342–348.

    Article  ADS  Google Scholar 

  20. Gault, D.E., Quaide, W.L., and Oberbeck, V.R., Impact cratering mechanics and structures, in Shock Metamorphism of Natural Materials, French, B.M. and Short, N.M., Eds., Baltimore, Md.: Mono Book, 1968, pp. 87–99.

    Google Scholar 

  21. Ghent, R.R., Hayne, P.O., Bandfield, J.L., Campbell, B.A., Allen, C.C., Carter, L.M., and Paige, D.A., Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages, Geology, 2014, vol. 42, no. 12, pp. 1059–1062.

    Article  ADS  Google Scholar 

  22. Gilbert, G.K., The Moon’s face: A study of the origin of its features, Philos. Soc. Wash. Bull.VII, 1893, pp. 241–292.

    Google Scholar 

  23. Gladman, B., Michel, P., and Froeschlé, C., The near-Earth object population, Icarus, 2000, vol. 146, no. 1, pp. 176–189.

    Article  ADS  Google Scholar 

  24. Granvik, M., Morbidelli, A., Jedicke, R., Bolin, B., Bottke, W.F., Beshore, E., Vokrouhlický, D., Nesvorný, D., and Michel, P., Debiased orbit and absolute-magnitude distributions for near-Earth objects, Icarus, 2018, vol. 312, pp. 181–207.

    Article  ADS  Google Scholar 

  25. Harris, A.W. and D’Abramo, G., The population of near-earth asteroids, Icarus, 2015, vol. 257, pp. 302–312.

    Article  ADS  Google Scholar 

  26. Hartmann, W.K., Inter-planet variations in scale of crater morphology – Earth, Mars, Moon, Icarus, 1972, vol. 17, pp. 707–713.

    Article  ADS  Google Scholar 

  27. Hergarten, S., Wulf, G., and Kenkmann, T., Comment on “Earth and Moon impact flux increased at the end of the Paleozoic”, Science, 2019, vol. 365, no. 6450. https://doi.org/10.1126/science.aaw7471

  28. Holsapple, K.A. and Schmidt, R.M., On the scaling of crater dimensions 1. Explosive processes, J. Geophys. Res., 1980, vol. 85, pp. 7247–7256.

    Article  ADS  Google Scholar 

  29. Holsapple, K.A. and Schmidt, R.M., On the scaling of crater dimensions 2. Impact processes, J. Geophys. Res., 1982, vol. 87, pp. 1849–1870.

    Article  ADS  Google Scholar 

  30. Holsapple, K.A. and Schmidt, R.M., Point source solutions and coupling parameters in cratering mechanics, J. Geophys. Res., 1987, vol. 92, pp. 6350–6376.

    Article  ADS  Google Scholar 

  31. Ipatov, S.I., The gap problem and asteroid-type resonant orbit evolution, Kinemat. Phys. Celest. Bodies, 1988a, vol. 4, no. 4, pp. 49–57.

  32. Ipatov, S.I., Evolution times for disks of planetesimals, Soviet Astron., 1988b, vol. 32, no. 5, pp. 560–566.

  33. Ipatov, S.I. Variations in orbital eccentricities of asteroids near the 2:5 resonance, Soviet Astron. Lett., 1989, vol. 15, no. 4, pp. 324–328.

  34. Ipatov, S.I., Numerical model of the evolution of asteroid orbits at the 2:5 resonance, Sol. Syst. Res., 1992a, vol. 26, no. 6, pp. 520–541.

  35. Ipatov, S.I., Evolution of asteroidal orbits at the 5:2 resonance, Icarus, 1992b, vol. 95, no. 1, pp. 100–114.

    Article  ADS  Google Scholar 

  36. Ipatov, S.I., Migration of bodies in the accretion of planets, Sol. Syst. Res., 1993, vol. 27, no. 1, pp. 65–79.

    ADS  Google Scholar 

  37. Ipatov, S.I., Migration of small bodies to the Earth, Sol. Syst. Res., 1995, vol. 29, no. 4, pp. 261–286.

    ADS  Google Scholar 

  38. Ipatov, S.I., Migratsiya nebesnykh tel v Solnechnoi sisteme (Migration of Celestial Bodies in the Solar System), Moscow: URSS, 2000. http://www.rfbr.ru/rffi/ru/books/o_29239, http://booksee.org/book/1472075.

  39. Ipatov, S.I., Comet hazard to the Earth, Adv. Space Res., 2001, vol. 28, pp. 1107–1116.

    Article  ADS  Google Scholar 

  40. Ipatov, S.I., Migration of planetesimals to the Earth and the Moon from different distances from the Sun, in 50th Lunar and Planet. Sci. Conf., Woodlands, Tex., 2019a.

  41. Ipatov, S.I., Probabilities of collisions of planetesimals from different regions of the feeding zone of the terrestrial planets with the forming planets and the Moon, Sol. Syst. Res., 2019b, vol. 53, no. 5, pp. 332–361.

    Article  ADS  Google Scholar 

  42. Ipatov, S.I. and Mather, J.C., Migration of trans-Neptunian objects to the terrestrial planets, Earth, Moon, Planets, 2003, vol. 92, pp. 89–98. http://arXiv.org/format/astro-ph/0305519.

    Article  ADS  Google Scholar 

  43. Ipatov, S.I. and Mather, J.C., Migration of Jupiter-family comets and resonant asteroids to near-Earth space, Ann. N. Y. Acad. Sci., 2004a, vol. 1017, pp. 46–65. http://arXiv.org/format/astro-ph/0308448.

    Article  ADS  Google Scholar 

  44. Ipatov, S.I. and Mather, J.C., Comet and asteroid hazard to the terrestrial planets, Adv. Space Res., 2004b, vol. 33, pp. 1524–1533. http://arXiv.org/format/astro-ph/0212177.

    Article  ADS  Google Scholar 

  45. Ipatov, S.I. and Mather, J.C., Migration of comets to the terrestrial planets, in Proc. IAU Symp. no. 236 “Near-Earth Objects, Our Celestial Neighbors: Opportunity and Risk” (Prague, Czech Republic, August 14–18,2006), Milani, A., Valsecchi, G.B., and Vokrouhlický D., Eds., Cambridge: Cambridge Univ. Press, 2007, pp. 55–64. http://arXiv.org/format/astro-ph/0609721.

  46. Ipatov, S.I., Feoktistova, E.A., and Svetsov, V.V., Variation of near-Earth object population based on analysis of diameters of lunar craters, in The Ninth Moscow Solar System Symposium 9M-S3 (Moscow, Russia, October 8–12, 2018), 2018, pp. 349–351. https://ms2018.cosmos.ru/.

  47. Ipatov, S.I., Feoktistova, E.A., and Svetsov, V.V., Near-Earth object population and formation of lunar craters during the last billion of years, in Origins: from the Protosun to the First Steps of Life (Proc. IAU Symp. no. 345, Vienna, 2018), Elmegreen, B.G., Tóth, L.V., and Gudel, M., Eds., Cambridge: Cambridge Univ. Press, 2020, pp. 299–300.

  48. Ivanov, B.A. and Artemieva, N.A., Transient cavity scaling for oblique impacts, in 32nd Lunar and Planet. Sci. Conf., Houston, 2001, no. 1327.

  49. Ivanov, B.A. and Artemieva, N.A., Numerical modeling of the formation of large impact craters, in Catastrophic Events and Mass Extinctions: Impact and Beyond. GSA Special Papers 356, Koeberl, C. and MacLeod, K.G., Eds., Boulder, Colo.: Geological Society of America, 2002, pp. 619–630.

    Google Scholar 

  50. Ivanov, B.A., Neukum, G., and Wagner, R., Size-frequency distributions of planetary impact craters and asteroids in Collisional Processes in the Solar System, Marov, M.Ya. and Rickman, H., Eds., Dordrecht: Kluwer Acad. Press, 2001, pp. 1–34.

    Google Scholar 

  51. Kalynn, J., Johnson, C.L., Osinski, G.R., and Barnouin, O., Topographic characterization of lunar complex craters, Geophys. Rev. Lett., 2013, vol. 40, no. 1, pp. 38–42. https://doi.org/10.1029/2012gl053608

    Article  ADS  Google Scholar 

  52. Kirchoff, M.R., Chapman, C.R., Marchi, S., Curtis, K.M., Enke, B., and Bottke, W.F., Ages of large lunar impact craters and implications for bombardment during the Moon’s middle age, Icarus, 2013, vol. 225, pp. 325–341. https://doi.org/10.1016/j.icarus.2013.03.018

    Article  ADS  Google Scholar 

  53. Koronovskii, N.V., Obshchaya geologiya: uchebnoe posobie (General Geology: Handbook), Moscow: KDU, Dobrosvet, 2018, electron. ed. https://bookonlime.ru/lecture/glava-2-stroenie-i-sostav-zemli.

  54. Kruger, T., Fey, J., and Kenkmann, T., The simple-to-complex transition of lunar craters: New precise depth/diameter measurements of mare and highland craters, in 46th Lunar and Planet. Sci. Conf., Woodlands, Tex., 2015, no. 2219.

  55. Kruger, T., Hergarten, S., and Kenkmann, T., Deriving morphometric parameters and the simple-to-complex transition diameter from a high-resolution, global database of fresh lunar impact craters, J. Geophys. Res.: Planets, 2018, vol. 123, pp. 2667–2690.

    Article  ADS  Google Scholar 

  56. Lammer, H., Scherf, M., Leitzinger, M., Odert, P., Kubyshkina, D., Burger, C., Johnstone, C.P., Maindl, T., Gudel, M., Tosi, N., Erkaev, N.V., and Fossati, L., Atmospheric noble gas isotope and bulk K/U ratios as a constraint on the early evolution of Venus and Earth, in The Tenth Moscow Solar System Symposium 10M-S3 (Moscow, October 7–11, 2019), 2019, pp. 70–71. https://ms2019.cosmos.ru/.

  57. Le Feuvre, M.L. and Wieczorek, M.A., Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System, Icarus, 2011, vol. 214, pp. 1–20.

    Article  ADS  Google Scholar 

  58. Losiak, A., Kohout, T., O’Sullivan, K., Thaisen, K., and Weider, S., Lunar Impact Crater Database. Lunar and Planetary Institute Lunar exploration Intern Program, 2009. Updated by Ohman, T., 2011.

  59. Losiak, A., Kohout, T., O’Sullivan, K., Thaisen, K., and Weider, S., Lunar Impact Crater Database. Lunar and Planetary Institute Lunar exploration Intern Program, 2009. Updated by Ohman, T., 2015. https://www.lpi.usra.edu/scientific-databases/, https:// www.lpi.usra.edu/lunar/surface/Lunar_Impact_Crater_ Database_v08Sep2015.xls.

  60. Marov, M.Ya. and Ipatov, S.I., Delivery of water and volatiles to the terrestrial planets and the moon, Sol. Syst. Res., 2018, vol. 52, no. 5, pp. 392–400.

    Article  ADS  Google Scholar 

  61. Mazrouei, S., Ghent, R.R., and Bottke, W.F., Application of a new method for exploring the Copernican cratering record, in Proc. Early Solar System Impact Bombardment III, Houston, 2015, pp. 35–36.

  62. Mazrouei, S., Ghent, R.R., Bottke, W.F., Parker, A.H., and Gerno, T.M., Earth and Moon impact flux increased at the end of the Paleozoic, Science, 2019a, vol. 363, pp. 253–255.

    Article  ADS  Google Scholar 

  63. Mazrouei, S., Ghent, R.R., Bottke, W.F., Parker, A.H., and Gernon, T.M., Response to comment on “Earth and Moon impact flux increased at the end of the Paleozoic”, Science, 2019b, vol. 365, no. 6450, id. eaaw9895. https://doi.org/10.1126/science.aaw9895

  64. McEwen, A.S., Moore, J.M., and Shoemaker, E.M., The Phanerozoic impact cratering rate: Evidence from the farside of the Moon, J. Geophys. Res.: Planets, 1997, vol. 102, no. E4, pp. 9231–9242.

    Article  ADS  Google Scholar 

  65. Melosh, H.J., Impact Cratering: A Geologic Process, Oxford Monographs on Geology and Geophysics, New York: Oxford Univ. Press, 1989, no. 11, 245.

  66. Melosh, H.J. and Ivanov, B.A., Impact crater collapse, Ann. Rev. Earth Planet. Sci., 1999, vol. 27, pp. 385–415.

    Article  ADS  Google Scholar 

  67. Migliorini, F., Morbidelli, A., Zappala, V., Gladman, B.J., Bailey, M.E., and Cellino, A., Vesta fragments from v6 and 3:1 resonances: Implications for V-type NEAs and HED meteorites, Meteorit. Planet. Sci., 1997, vol. 32, no. 6, pp. 903–916.

    Article  ADS  Google Scholar 

  68. Milani, A. and Farinella, P., An asteroid on the brink, Icarus, 1995, vol. 115, pp. 209–212.

    Article  ADS  Google Scholar 

  69. Minton, D.A., Richardson, J.E., and Fassett, C.I., Re-examining the main asteroid belt as the primary source of ancient lunar craters, Icarus, 2015, vol. 247, pp. 172–190.

    Article  ADS  Google Scholar 

  70. Morbidelli, A. and Gladman, B., Orbital and temporal distributions of meteorites originating in the asteroid belt, Meteorit. Planet. Sci., 1998, vol. 33, no. 5, pp. 999–1016.

    Article  ADS  Google Scholar 

  71. Morbidelli, A., Delbo, M., Granvik, M., Bottke, W.F., Jedicke, R., Bolin, B., and Michel, P. Debiased albedo distribution for Near Earth Objects, Icarus, 2020, vol. 340, id. 113631.

  72. Nesvorný, D., Bottke, W.F., Jr., Dones, L., and Levison, H.F., The recent breakup of an asteroid in the main-belt region, Nature, 2002, vol. 417, no. 6890, pp. 720–771.

    Article  ADS  Google Scholar 

  73. Neukum, G. and Ivanov, B.A., Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data, in Hazards Due to Comets and Asteroids, Gehrels, T., Ed., Tucson: Univ. Arizona Press, 1994, pp. 359–416.

    Google Scholar 

  74. Neukum, G. and Koenig, B., Dating of individual craters, in Proc. 7th Lunar Sci. Conf., 1976, pp. 2867–2881.

  75. Neukum, G., Koenig, B., and Arkani-Hamed, J., A study of lunar impact crater size-distributions, Moon, 1975, vol. 12, pp. 201–229.

    Article  ADS  Google Scholar 

  76. Neukum, G., Ivanov, B.A., and Hartmann, W.K., in Chronology and Evolution of Mars, Kallenbach, R., Geiss, J., and Hartmann, W.K, Eds., Dordrecht: Kluwer Acad. Press, 2001, pp. 55–86.

    Google Scholar 

  77. Opik, E.J., Collision probabilities with the planets and the distribution of interplanetary matter, in Proc. R. Irish Acad. Sect. A, 1951, vol. 54, pp. 165–199.

  78. Pierazzo, E. and Melosh, H.J., Melt production in oblique impacts, Icarus, 2000, vol. 145, pp. 252–261.

    Article  ADS  Google Scholar 

  79. Pike, R.J., Size-dependence in the shape of fresh impact craters on the moon in Impact and Explosion Cratering: Planetary and Terrestrial Implications, Roddy, D.J., Pepin, R.O., and Merrill, R.B., Eds., Tucson: Univ. Arizona Press, 1977, pp. 489–509.

    Google Scholar 

  80. Pokorny, P. and Vokrouhlicky, D., Opik-type collision probability for high-inclination orbits: Targets on eccentric orbits, Icarus, 2013, vol. 226, pp. 682–693.

    Article  ADS  Google Scholar 

  81. Roddy, D.J., Pepin, R.O., and Merrill, R.B., Impact and explosion cratering. Planetary and terrestrial implications, in Proc. Symp. on Planetary Cratering Mechanics (Flagstaff, Arizona, September 13–17, 1976), New York: Pergamon, 1977, p. 1301.

  82. Rodionova, Zh.F., Karlov, A.A., Skobeleva, T.P., Konotopskaya, E.V., Shevchenko, V.V., Kozubskii, K.E., Dekhtyareva, K.I., Smolyakova, T.F., Tishik, L.I., and Fedorova, E.A., Morfologicheskii katalog kraterov Luny (Morphological Catalog of Lunar Craters), Moscow: Mosk. Gos. Univ., 1987.

  83. Schmidt, R.M. and Housen, K.R., Some recent advances in the scaling of impact and explosion cratering, Int. J. Impact Eng., 1987, vol. 5, pp. 543–560.

    Article  ADS  Google Scholar 

  84. Silber, E.A., Osinski, G.R., Johnson, B.C., and Grieve, R.A.F., Effect of impact velocity and acoustic fluidization on the simple-to-complex transition of lunar craters, J. Geophys. Res.: Planets, 2017, vol. 122, no. 5, pp. 800–821. https://doi.org/10.1002/2016je005236

    Article  ADS  Google Scholar 

  85. Stuart, J.S. and Binzel, R.P., Bias-corrected population, size distribution, and impact hazard for the near-earth objects, Icarus, 2004, vol. 170, pp. 295–311.

    Article  ADS  Google Scholar 

  86. Usui, F., Kasuga, T., Hasegawa, S., Ishiguro, M., Kuroda, D., Müller, T.G., Ootsubo, T., and Matsuhara, H., Albedo properties of main belt asteroids based on the all-sky survey of the infrared astronomical satellite AKARI, Astrophys. J., 2013, vol. 762, id. 56. https://doi.org/10.1088/0004-637X/762/1/56

  87. Vokrouhlický, D., Pokorný, P., and Nesvorný, D., Öpik-type collision probability for high-inclination orbits, Icarus, 2012, vol. 219, pp. 150–160.

    Article  ADS  Google Scholar 

  88. Vokrouhlický, D., Bottke, W.F., and Nesvorný, D., Forming the Flora Family: Implications for the near-Earth asteroid population and large terrestrial planet impactors, Astron. J., 2017, vol. 153, no. 4, id. 172.

  89. Werner, S.C. and Ivanov, B.A., Exogenic dynamics, cratering, and surface ages, in Treatise on Geophysics, 2015, vol. 10, 2nd ed., pp. 327–365.

  90. Wetherill, G.W., Collisions in the asteroid belt, J. Geophys. Res., 1967, vol. 72, pp. 2429–2444.

    Article  ADS  Google Scholar 

  91. Wieczorek, M.A., Neumann, G.A., Nimmo, F., Kiefer, W.S., Taylor, G.J., Melosh, H.J., Phillips, R.J., Solomon, S.C., Andrews-Hanna, J.C., Asmar, S.W., Konopliv, A.S., Lemoine, F.G., Smith, D.E., Watkins, M.M., Williams, J.G., and Zuber, M.T., The crust of the Moon as seen by GRAIL, Science, 2013, vol. 339, no. 6120, pp. 671–675.

    Article  ADS  Google Scholar 

  92. Wilhelms, D.E., The geologic history of the Moon. U.S. Geological Survey Professional Paper 1348, 1987.

  93. Wilhelms, D.E. and Byrne, C.J., Stratigraphy of lunar craters, 2009. http://www.imageagain.com/Strata/StratigraphyCraters.2.0.htm.

  94. Zappalà, V., Cellino, A., Gladman, B.J., Manley, S., and Migliorini, F., Asteroid showers on Earth after family breakup events, Icarus, 1998, vol. 134, no. 1, pp. 176–179.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to reviewers for numerous valuable comments that contributed much to improving the paper.

Funding

The study was performed under government contracts of the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, the Sternberg Astronomical Institute of Moscow State University, and the Institute of Geosphere Dynamics of the Russian Academy of Sciences. The studies of the probabilities of asteroid collisions with the Earth were supported by a grant on exoplanets from the Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Ipatov.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipatov, S.I., Feoktistova, E.A. & Svettsov, V.V. Number of Near-Earth Objects and Formation of Lunar Craters over the Last Billion Years. Sol Syst Res 54, 384–404 (2020). https://doi.org/10.1134/S0038094620050019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094620050019

Keywords:

Navigation