Skip to main content
Log in

Displaceability of Certain Constant Sectional Curvature Lagrangian Submanifolds

  • Published:
Results in Mathematics Aims and scope Submit manuscript

A Publisher Correction to this article was published on 06 February 2021

This article has been updated

Abstract

We present an alternative proof of a nonexistence result for displaceable constant sectional curvature Lagrangian submanifolds under certain assumptions on the Lagrangian submanifold and on the ambient symplectically aspherical symplectic manifold. The proof utilizes an index relation relating the Maslov index, the Morse index and the Conley–Zehnder index for a periodic orbit of the flow of a specific Hamiltonian function, a result on this orbit’s Conley–Zehnder index and another result on the Morse indices for constant sectional curvature manifolds the utilization of which to prove nondisplaceability is new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

Notes

  1. When the map \(\pi _{1}(L)\rightarrow \pi _{1}(M)\) is injective in the long exact sequence of homotopy groups ...\(\pi _{2}(M)\rightarrow \pi _{2}(M,\ L)\rightarrow \pi _{1}(L)\rightarrow \pi _{1}(M)\) ..., the map \(\pi _{2}(M)\rightarrow \pi _{2}(M,\ L)\) is onto. Then, by symplectic asphericity, \(\omega |_{\pi _{2}(M,\ L)}=0\).

  2. Such a function can be obtained [50].

  3. For sufficiently small \(\epsilon _L>0\), F is a Morse function whose critical points outside \(U_{\epsilon }\) agree with those of \(F_0\) and whose critical points in \(U_{\epsilon }\) are precisely the critical points of \(F_L\) on \(L \subset M\).

  4. The set of potentials is dense in \(C^{\infty }(S^1 \times L)\) [35, 58].

References

  1. Abreu, M., Borman, M.S., McDuff, D.: Displacing Lagrangian toric fibers by extended probes. Algebra Geom. Topol. 14(2), 687–752 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Abreu, M., Macarini, L.: Remarks on Lagrangian intersections in toric manifolds. Trans. Am. Math. Soc. 365(7), 3851–3875 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Albers, P.: On the extrinsic topology of Lagrangian submanifolds. Int. Math. Res. Notices 38, 2341–2371 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Albers, P.: Erratum for “On the extrinsic topology of Lagrangian submanifolds”. Int. Math. Res. Notices 7, 1363–1369 (2010)

    MATH  Google Scholar 

  5. Albers, P., Frauenfelder, U.: A nondisplaceable Lagrangian torus in \(\text{ T}^{*}{S}^{2}\). Commun. Pure Appl. Math. 61(8), 1046–1051 (2008)

    MATH  Google Scholar 

  6. Albers, P., Frauenfelder, U.: Rabinowitz Floer homology: a survey. In: Bär, C., Lohkamp, J., Schwarz, M. (eds.) Global Differential Geometry, Springer Proceedings in Mathematics, vol. 17. Springer, Berlin (2012)

    Google Scholar 

  7. Biran, P.: Lagrangian non-intersections. Geom. Funct. Anal. 16, 279–326 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Biran, P., Cornea, O.: Rigidity and uniruling for Lagrangian submanifolds. Geom. Topol. 13(5), 2881–2989 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Biran, P., Entov, M., Polterovich, L.: Calabi quasimorphisms for the symplectic ball. Commun. Contemp. Math. 6, 793–802 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Borman, M.S.: Quasi-states, quasi-morphisms, and the moment map. Int. Math. Res. Notices 11, 2497–2533 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Buhovsky, L.: The Maslov class of Lagrangian tori and quantum products in Floer cohomology. J. Topol. Anal. 2(1), 57–75 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Cannas, da Silva, A.: Lectures on Symplectic Geometry. Springer, Berlin (2008)

  13. Chaperon, M.: Quelques questions de géométrie symplectique, Séminaire N. Bourbaki 1982–1983. Astérisque 105–106, 231–249 (1983)

    Google Scholar 

  14. Charette, F.: Gromov width and uniruling for orientable Lagrangian surfaces. Algebra Geom. Topol. 15(3), 1439–1451 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Charette, F.: Quantum Reidemeister torsion, open Gromov–Witten invariants and a spectral sequence of Oh. Int. Math. Res. Notices 8, 2483–2518 (2017)

    MATH  Google Scholar 

  16. Chekanov, Y.V.: Lagrangian intersections, symplectic energy, and areas of holomorphic curves. Duke Math. J. 95(1), 213–226 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Chekanov, Y., Schlenk, F.: Notes on monotone Lagrangian twist tori. Electron. Res. Announc. Math. Sci. 17, 104–121 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Cho, C.-H.: Non-displaceable Lagrangian submanifolds and Floer cohomology with non-unitary line bundle. J. Geom. Phys. 58(11), 1465–1476 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Cho, Y., Kim, Y., Oh, Y.-G.: Lagrangian fibers of Gelfand–Cetlin systems. arXiv:1704.07213v2 (2018)

  20. Dimitroglou Rizell, G., Golovko, R.: The number of Hamiltonian fixed points on symplectically aspherical manifolds. Proc. Gökova Geom. Topol. Conf. 2016, 138–150 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Duistermaat, J.J.: On the Morse index in variational calculus. Adv. Math. 21(2), 173–195 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Floer, A.: Morse theory for Lagrangian intersections. J. Differ. Geom. 28, 513–547 (1988)

    MathSciNet  MATH  Google Scholar 

  23. Floer, A.: The unregularized gradient flow of the symplectic action. Commun. Pure Appl. Math. 41, 775–813 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Frauenfelder, U., Shlenk, F.: Hamiltonian dynamics on convex symplectic manifolds. Isr. J. Math. 159, 1–56 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds I. Duke Math. J. 151(1), 23–175 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds II: bulk deformations. Sel. Math. New Ser. 17(3), 609–711 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Toric degeneration and nondisplaceable Lagrangian tori in \(S^2 \times S^2\). Int. Math. Res. Notices 13, 2942–2993 (2012)

    MATH  Google Scholar 

  28. Gromov, M.: Pseudo-holomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    MathSciNet  MATH  Google Scholar 

  29. Guillermou, S., Kashiwara, M., Schapira, P.: Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems. Duke Math. J. 161(2), 201–245 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Her, H.L.: Symplectic energy and Lagrangian intersection under Legendrian deformations. Pac. J. Math. 231(2), 417–435 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Hofer, H.: Lagrangian embeddings and critical point theory. Ann. l. H. Poinc. Anal. Non Linéaire 2(6), 407–462 (1985)

    MathSciNet  MATH  Google Scholar 

  32. Iriyeh, H.: Symplectic topology of Lagrangian submanifolds of \({{\mathbb{C}} P^{n}}\) with intermediate minimal Maslov numbers. Adv. Geom. 17(2), 247–264 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Kerman, E.: Hofer’s geometry and Floer theory under the quantum limit. Int. Math. Res. Notices (2008). https://doi.org/10.1093/imrn/rnm137

    Article  MathSciNet  MATH  Google Scholar 

  34. Kerman, E.: Action selectors and Maslov class rigidity. Int. Math. Res. Notices 23, 4395–4427 (2009). https://doi.org/10.1093/imrn/rnp093

    Article  MathSciNet  MATH  Google Scholar 

  35. Kerman, E., Sirikci, N.: Maslov class rigidity for Lagrangian submanifolds via Hofer’s geometry. Comment. Math. Helv. 85(4), 907–949 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Kim, Y., Lee, J., Sanda, F.: Detecting non-displaceable toric fibers on compact toric manifolds via tropicalizations. In: BU Open Access Articles. https://hdl.handle.net/2144/29005 (2018)

  37. Klingenberg, W.: Lectures on Closed Geodesics. Springer, Berlin (1978)

    MATH  Google Scholar 

  38. Lalonde, F., Polterovich, L.: Symplectic diffeomorphisms as isometries of Hofer’s norm. Topology 36(3), 711–727 (1997)

    MathSciNet  MATH  Google Scholar 

  39. Laudenbach, F., Sikorav, J.C.: Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibre cotangent. Invent. Math. 82, 349–358 (1985)

    MathSciNet  MATH  Google Scholar 

  40. McDuff, D.: Displacing Lagrangian toric fibers via probes. In: Low-Dimensional and Symplectic Topology, volume 82 of Proceedings of Symposia in Pure Mathematics, pp. 131–160. American Mathematical Society, Providence RI (2011)

  41. McDuff, D., Salamon, D.: J-holomorphic Curves and Symplectic Topology, Colloquium Publications, vol. 52. AMS, Providence, RI (2004)

    MATH  Google Scholar 

  42. Oakley, J.S.: Lagrangian Submanifolds of Products of Spheres. Doctoral Thesis Submitted to the University of Georgia (2014)

  43. Oakley, J., Usher, M.: On certain Lagrangian submanifolds of \(S^2 \times S^2\) and \({{\mathbb{C}} P^{n}}\). Algebra Geom. Topol. 16(1), 149–209 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Ohta, H., Ono, K.: Floer theory for Lagrangian submanifolds. KIAS Newsl. 4, 12–19 (2012)

    Google Scholar 

  45. Ono, K.: Some remarks on Lagrangian tori. J. Fixed Point Theory Appl. 17, 221–237 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Pabiniak, M.: Displacing (Lagrangian) submanifolds in the manifolds of full flags. Adv. Geom. 15(1), 101–108 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Polterovich, L.: An obstacle to non-Lagrangian intersections. In: The Floer Memorial Volume 133, Progress in Mathematics, pp. 575–586. Birkhäuser, Basel (1995)

  48. Ritter, A.F., Smith, I.: The monotone wrapped Fukaya category and the open–closed string map. Sel. Math. New Ser. 23(1), 533–642 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Seidel, P., Smith, I.: The symplectic topology of Ramanujam’s surface. Comment. Math. Helv. 80, 859–881 (2005)

    MathSciNet  MATH  Google Scholar 

  50. Sirikci, N.: Obstructions to the Exitence of Displaceable Lagrangian Submanifolds. Doctoral Thesis Submitted to University of Illinois at Urbana Champaign (2012)

  51. Sirikci, N.: The Morse Index for Manifolds with Constant Sectional Curvature. Preprint (2018)

  52. Smith, J.E.: Symmetry in Monotone Lagrangian Floer Theory. Doctoral Thesis Submitted to University of Cambridge. https://doi.org/10.17863/CAM.13678 (2017)

  53. Sugimoto, Y.: Hofer’s metric on the space of Lagrangian submanifolds and wrapped Floer homology. J. Fixed Point Theory Appl. 18, 547–567 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Theret, D.: A Lagrangian Camel. Comment. Math. Helv. 84(4), 591–614 (1999)

    MathSciNet  MATH  Google Scholar 

  55. Tonkonog, D., Vianna, R.: Low-area Floer theory and non-displaceability. arXiv:1511.00891v3 (2017)

  56. Vianna, R.: Continuum families of non-displaceable Lagrangian Tori in \(({\mathbb{C}} P^{1})^{2m}\). arXiv:1603.02006 (2016)

  57. Viterbo, C.: A new obstruction to embedding Lagrangian tori. Invent. Math. 100, 301–320 (1990)

    MathSciNet  MATH  Google Scholar 

  58. Weber, J.: Perturbed closed geodesics are periodic orbits: index and transversality. Math. Z. 241(1), 45–81 (2002)

    MathSciNet  MATH  Google Scholar 

  59. Woodward, C.T.: Gauged Floer theory of toric moment fibers. Geom. Funct. Anal. 21, 680–749 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nil İpek Şirikçi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised. In the original publication the author name is incorrectly published as “Nil İpek Şirikçi”. The correct author name should be read as “Nil İpek Şirikçi” and it is available in this correction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şirikçi, N.İ. Displaceability of Certain Constant Sectional Curvature Lagrangian Submanifolds. Results Math 75, 158 (2020). https://doi.org/10.1007/s00025-020-01279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01279-0

Mathematics Subject Classification

Keywords

Navigation