Skip to main content
Log in

Ping-pong quantum key distribution with trusted noise: non-Markovian advantage

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The ping-pong protocol adapted for quantum key distribution is studied in the trusted quantum noise scenario, wherein the legitimate parties can add noise locally. For a well-studied attack model, we show how non-unital, quantum non-Markovianity of the added noise can improve the key rate. We also point out that this noise-induced advantage cannot be obtained by Alice and Bob by adding local classical noise to their post-measurement data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shenoy-Hejamadi, A., Pathak, A., Radhakrishna, S.: Quantum cryptography: key distribution and beyond. Quanta 6(1), 1–47 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computers, Systems & Signal Processing, Bangalore, India, 10–12 December 1984, pp. 175–179

  3. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  4. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)

    Article  ADS  Google Scholar 

  5. Wójcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90(15), 157901 (2003)

    Article  ADS  Google Scholar 

  6. Cai, Q.-Y., Li, B.-W.: Improving the capacity of the boström-felbinger protocol. Phys. Rev. A 69(5), 054301 (2004)

    Article  ADS  Google Scholar 

  7. Cai, Q.-Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23 (2006)

    Article  ADS  MATH  Google Scholar 

  8. Zhang, Z., Man, Z., Li, Y.: Improving wójcik’s eavesdropping attack on the ping-pong protocol. Phys. Lett. A 333(1), 46–50 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Boström, K., Felbinger, T.: On the security of the ping-pong protocol. Phys. Lett. A 372(22), 3953–3956 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Vasiliu, E.V.: Non-coherent attack on the ping-pong protocol with completely entangled pairs of qutrits. Quantum Inf. Process. 10(2), 189–202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zawadzki, P.: Security of ping-pong protocol based on pairs of completely entangled qudits. Quantum Inf. Process. 11, 1–12 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zawadzki, P.: Improving security of the ping-pong protocol. Quantum Inf. Process. 12(1), 149–155 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Li, J., Song, D.J., Guo, X.J., JING, B.: An improved security detection strategy based on w state in “ping-pong” protocol. Chin. J. Electron. 21, 117–120 (2012)

    Google Scholar 

  14. Han, Y.-G., Yin, Z.-Q., Li, H.-W., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Security of modified ping-pong protocol in noisy and lossy channel. Sci. Rep. 4, 4936 (2014)

    Article  Google Scholar 

  15. Banerjee, S.: Open Quantum Systems. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  16. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  17. Shadman, Z., Kampermann, H., Meyer, T., Bruß, D.: Optimal eavesdropping on noisy states in quantum key distribution. Int. J. Quantum Inf. 07(01), 297–306 (2009)

    Article  MATH  Google Scholar 

  18. Mertz, M., Kampermann, H., Shadman, Z., Bruß, D.: Quantum key distribution with finite resources: taking advantage of quantum noise. Phys. Rev. A 87, 042312 (2013)

    Article  ADS  Google Scholar 

  19. Usenko, Vladyslav C., Filip, Radim: Trusted noise in continuous-variable quantum key distribution: a threat and a defense. Entropy 18(1), (2016)

  20. García-Patrón, R., Cerf, N.J.: Continuous-variable quantum key distribution protocols over noisy channels. Phys. Rev. Lett. 102, 130501 (2009)

    Article  ADS  Google Scholar 

  21. Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77(9), 094001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Pradeep Kumar, N., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian evolution: a quantum walk perspective. Open Syst. Inf. Dyn. 25(03), 1850014 (2018)

    Article  MATH  Google Scholar 

  23. Li, L., Hall, M.J.W., Wiseman, H.M.: Concepts of quantum non-Markovianity: a hierarchy. Phys. Rep. 759, 1–51 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Shrikant, U, Srikanth, R., Banerjee, Subhashish: On a concept of quantum non-Markovianity weaker than cp-indivisibility. arXiv:1911.04162

  25. Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational Markov condition for quantum processes. Phys. Rev. Lett. 120, 040405 (2018)

    Article  ADS  Google Scholar 

  26. Sharma, V., Shrikant, U., Srikanth, R.: Decoherence can help quantum cryptographic security. Quantum Inf. Process. 17(88), 207 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16(5), 115 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  29. de Vega, I., Alonso, D.: Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Rossi, M.A.C., Cattaneo, M., Paris, M.G.A., Maniscalco, S.: Non-Markovianity is not a resource for quantum spatial search on a star graph subject to generalized percolation. Quantum Measurements Quantum Metrol. 5(1), 40–49 (2018)

    Article  Google Scholar 

  31. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018–3021 (1998)

    Article  ADS  Google Scholar 

  32. Bruß, D., Lütkenhaus, N.: Quantum key distribution: from principles to practicalities. Appl. Algebra Eng. Commun. Comput. 10(4), 383–399 (2000)

    MathSciNet  MATH  Google Scholar 

  33. Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77(1), 012318 (2008)

    Article  ADS  Google Scholar 

  34. Breuer, H.-P., Laine, E.-M., Piilo, J., Vacchini, B.: Colloquium: non-Markovian dynamics in open quantum systems. Rev. Modern Phys. 88(2), 021002 (2016)

    Article  ADS  Google Scholar 

  35. Passos, M.H.M., Concha Obando, P., Balthazar, W.F., Paula, F.M., Huguenin, J.A.O., Sarandy, M.S.: Non-Markovianity through quantum coherence in an all-optical setup. Opt. Lett. 44(10), 2478–2481 (2019)

    Article  ADS  Google Scholar 

  36. Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

    Article  ADS  Google Scholar 

  37. Fanchini, F.F., Karpat, G., Çakmak, B., Castelano, L.K., Aguilar, G.H., Jiménez Farías, O., Walborn, S.P., Souto Ribeiro, P.H., De Oliveira, M.C.: Non-Markovianity through accessible information Non-Markovianity through accessible information. Phys. Rev. Lett. 112(21), 210402 (2014)

    Article  ADS  Google Scholar 

  38. Yugra, Y., De Zela, F., Cuevas, Á.: Coherence-based measurement of non-Markovian dynamics in an open quantum system. Phys. Rev. A 101(1), 013822 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SU and RS acknowledge financial support of the Government of India DST-SERB grant EMR/2016/004019. SU also thanks the Admar Mutt Education Foundation (AMEF), Bengaluru, Karnataka, India, for partial financial support. SB and RS acknowledge the support from Interdisciplinary Cyber Physical Systems (ICPS) program of the Department of Science and Technology (DST), India, Grants No.: DST/ICPS/QuST/Theme-1/2019/6 and DST/ICPS/QuST/Theme-1/2019/14, respectively. US thanks Ashutosh Singh and S. Omkar for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Srikanth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utagi, S., Srikanth, R. & Banerjee, S. Ping-pong quantum key distribution with trusted noise: non-Markovian advantage. Quantum Inf Process 19, 366 (2020). https://doi.org/10.1007/s11128-020-02874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02874-4

Keywords

Navigation