Skip to main content
Log in

Evaluation of Cellulolytic Enzyme-Assisted Microwave Extraction of Punica granatum Peel Phenolics and Antioxidant Activity

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Conventional techniques for phenolics extraction from pomegranate (Punica granatum) peel (PP) have several insufficiencies like longer time duration, bioactive degradation, excess use of harmful chemicals and solvents. In the present study, we established the synergistic use of two non-conventional extraction strategies i.e., enzyme-assisted extraction (EAE) using a cellulolytic enzyme preparation (Viscozyme) followed by microwave-assisted extraction (MAE) for efficient recovery of phenolics from PP. This optimized method was individually compared with EAE, MAE, and conventional solvent extraction (CSE) methods for recovering PP phenolics with maximum antioxidant activity (AOA). Extracts were analyzed for AOA using ferric reducing antioxidant power (FRAP) and cupric reducing AOA (CUPRAC) methods. Response surface methodology (RSM), was used as an optimization tool to achieve maximum yield of phenolics and with highest AOA at power 443.5 W, time 131.0 min, and solvent-to-solid ratio 23.6:1. The predicted values for maximum phenolics and AOA obtained through RSM were 305 mg GAE/g, 1788 μmol TE/g (FRAP) and 2641 μmol TE/g (CUPRAC), respectively. Phenolic contents of only 94.6, 165.46, and 197.6 mg GAE/g were achieved through CSE, EAE and MAE, respectively. Here we substantiate the auxiliary role of Viscozyme and microwave treatment in achieving high phenolic content and AOA from PPs. Phenolic rich extracts are known to act as multi-target ligands that inhibit various enzymes involved in diseases like Alzheimer’s, Parkinson’s, and diabetes mellitus. The extract can be commercially exploited for the development of functional foods, supplements, and natural preservatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akhtar S, Ismail T, Fraternale D, Sestili P (2015) Pomegranate peel and peel extracts: chemistry and food features. Food Chem 174:417–425. https://doi.org/10.1016/j.foodchem.2014.11.035

    Article  CAS  PubMed  Google Scholar 

  2. Derakhshan Z, Ferrante M, Tadi M, Ansari F, Heydari A, Hosseini MS, Sadrabad EK (2018) Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem Toxicol 114:108–111. https://doi.org/10.1016/j.fct.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  3. Kumar M, Dahuja A, Sachdev A, Kaur C, Varghese E, Saha S, Sairam KVSS (2019a) Valorisation of black carrot pomace: microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box–Behnken design. J Food Sci Technol 56:995–1007. https://doi.org/10.1007/s13197-018-03566-9

  4. Kumar M, Dahuja A, Sachdev A, Kaur C, Varghese E, Saha S, Sairam KVSS (2019b) Evaluation of enzyme and microwave-assisted conditions on extraction of anthocyanins and total phenolics from black soybean (Glycine max L.) seed coat. Int J Biol Macromol 135:1070–1081. https://doi.org/10.1016/j.ijbiomac.2019.06.034

  5. Orgil O, Schwartz E, Baruch L, Matityahu I, Mahajna J, Amir R (2014) The antioxidative and anti-proliferative potential of non-edible organs of the pomegranate fruit and tree. LWT-Food Sci Technol 58:571–577. https://doi.org/10.1016/j.lwt.2014.03.030

    Article  CAS  Google Scholar 

  6. Kaderides K, Papaoikonomou L, Serafim M, Goula AM (2019) Microwave-assisted extraction of phenolics from pomegranate peels: optimization, kinetics, and comparison with ultrasounds extraction. Chem Eng Proc Proc Intens 137:1–11. https://doi.org/10.1016/j.cep.2019.01.006

    Article  CAS  Google Scholar 

  7. Ju H, He W, Yan C, Du X, Shi X (2017) Microwave assisted extraction of flavonoids from pomegranate peel and its antioxidant activity. BIO Web of Conferences, 8:03008. EDP Sciences. https://doi.org/10.1051/bioconf/20170803008

  8. Vieira AR, Abar L, Chan DSM, Vingeliene S, Polemiti E, Stevens C, Norat T (2017) Foods and beverages and colorectal cancer risk: a systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR continuous update project. Ann Oncol 28(8):1788–1802. https://doi.org/10.1093/annonc/mdx171

    Article  CAS  PubMed  Google Scholar 

  9. Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S, Xia W (2009) Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol 70(1):63–70. https://doi.org/10.1016/j.seppur.2009.08.012

    Article  CAS  Google Scholar 

  10. Xi J, He L, Yan L (2017) Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge. Food Chem 230:354–361. https://doi.org/10.1016/j.foodchem.2017.03.072

    Article  CAS  PubMed  Google Scholar 

  11. Rajha HN, Khattar A-MA, El Kantar S, Boussetta N, Lebovka N, Maroun RG, Louka N, Vorobiev E (2019) Comparison of aqueous extraction efficiency and biological activities of polyphenols from pomegranate peels assisted by infrared, ultrasound, pulsed electric fields and high-voltage electrical discharges. Innov Food Sci Emerg Technol 58:102212. https://doi.org/10.1016/j.ifset.2019.102212

  12. Rodríguez-Morgado B, Candiracci M, Santa-María C, Revilla E, Gordillo B, Parrado J, Castaño A (2014) Obtaining from grape pomace an enzymatic extract with anti-inflammatory properties. Plant Foods Hum Nutr 70(1):42–49. https://doi.org/10.1007/s11130-014-0459-0

  13. Palmeri R, Restuccia C, Monteleone JI, Sperlinga E, Siracusa L, Serafini M, Finamore A, Spagna G (2017) Bioactivity improvement of Olea europaea leaf extract biotransformed by Wickerhamomyces anomalus enzymes. Plant Foods Hum Nutr 72(2):211–218. https://doi.org/10.1007/s11130-017-0612-7

    Article  CAS  PubMed  Google Scholar 

  14. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol 299:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  15. Benzie IEF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant” power: the FRAP assay. Anal Chem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  Google Scholar 

  16. Kumar M, Dahuja A, Sachdev A, Kaur C, Varghese E, Saha S, Sairam KVSS (2020) Black carrot (Daucus carota ssp.) and black soybean (Glycine max (L.) Merr.) anthocyanin extract: a remedy to enhance stability and functionality of fruit juices by copigmentation. Waste Biomass Valor 11:99–108. https://doi.org/10.1007/s12649-018-0450-3

  17. Dahmoune F, Nayak B, Moussi K, Remini H, Madani K (2015) Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem 166:585–595. https://doi.org/10.1016/j.foodchem.2014.06.066

    Article  CAS  PubMed  Google Scholar 

  18. Xu, H-J, Shi X, Ji X, Du Y, Zhu H, Zhang L (2012) A rapid method for simultaneous determination of triterpenoid saponins in Pulsatilla turczaninovii using microwave-assisted extraction and high performance liquid chromatography–tandem mass spectrometry. Food Chem 135(1):251–258. https://doi.org/10.1016/j.foodchem.2012.04.081

  19. Maeng JH, Muhammad Shahbaz H, Ameer K, Jo Y, Kwon JH (2017) Optimization of microwave-assisted extraction of bioactive compounds from coriolus versicolor mushroom using response surface methodology. J Food Process Eng 40(2):1–8. https://doi.org/10.1111/jfpe.12421

    Article  CAS  Google Scholar 

  20. Spigno G, De FDM (2009) Microwave-assisted extraction of tea phenols: a phenomenological study. J Food Eng 93(2):210–217. https://doi.org/10.1016/j.jfoodeng.2009.01.006

    Article  CAS  Google Scholar 

  21. Talebi M, Ghassempour A, Talebpour Z, Rassouli A, Dolatyari L (2004) Optimization of the extraction of paclitaxel from Taxus baccata L. by the use of microwave energy. J Sep Sci 27:1130–1136. https://doi.org/10.1002/jssc.200401754

    Article  CAS  PubMed  Google Scholar 

  22. Koyu H, Kazan A, Demir S, Haznedaroglu MZ, Yesil-Celiktas O (2018) Optimization of microwave assisted extraction of Morus nigra L. fruits maximizing tyrosinase inhibitory activity with isolation of bioactive constituents. Food Chem 248:183–191. https://doi.org/10.1016/j.foodchem.2017.12.049

    Article  CAS  PubMed  Google Scholar 

  23. Alvares Garcia C (2018) Application of enzymes for fruit juice processing. In: Rajauria G, Tiwari BK (eds) Fruit juices: extraction, composition, quality and analysis, pp 201-216. https://doi.org/10.1016/B978-0-12-802230-6.00011-4

  24. Panja P (2017) Green extraction methods of food polyphenols from vegetable materials. Curr Opin Food Sci 17:1–10. https://doi.org/10.1016/j.cofs.2017.11.012

    Article  Google Scholar 

Download references

Acknowledgements

The contribution given by 5 anonymous reviewers in the form of comments for improving manuscript is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manoj Kumar or Charanjit Kaur.

Ethics declarations

Conflict of Interest

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. I hereby confirm that this work is original and has not been published elsewhere nor is it currently under consideration for publication elsewhere. The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Tomar, M., Punia, S. et al. Evaluation of Cellulolytic Enzyme-Assisted Microwave Extraction of Punica granatum Peel Phenolics and Antioxidant Activity. Plant Foods Hum Nutr 75, 614–620 (2020). https://doi.org/10.1007/s11130-020-00859-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00859-3

Keywords

Navigation