Skip to main content
Log in

Numerical analysis of tunable nonlinear plasmonic router based on nanoscale ring resonators

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the advanced plasmonics integrated circuits (PICs) there has been outstanding, continuing interest in developing routers to harness light-matter interactions in nanoscale dimensions with wanted optical properties. In this regard, herein, we introduce an all-optical router based on nanometer ring resonator which surface plasmon resonance (SPR) and nonlinear materials are used simultaneously to enhance high performance range. By changing the radius of the ring resonator and the intensity of the light we achieved control of the parameters and the routing. The results of routing and shifting the central frequency with light intensity and radius of the ring resonator are studied. The performance of the router indicates that a ring is required for each ports, which changes the control parameters to change its central frequency, as well as we can be said the use of switches and filters as other design features. These routers have advantages such as nano scale size, low light intensity, fast response time, integratable and etc., which are highly used in all-optical circuits, image processing and today's modern technology. In our simulation, we consider transmission or reflection of light in each ports based on the finite difference time domain (FDTD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alipour, A., Farmani, A., Mir, A.: High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 18(17), 7047–7054 (2018)

    ADS  Google Scholar 

  • Amoosoltani, N., et al.: A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect. IEEE Sens. J. 20, 9097–9104 (2020)

    ADS  Google Scholar 

  • Bana, X., et al.: A nonlinear plasmonic waveguide based all-optical bidirectional switching. Opt. Commun. 406, 124–127 (2018)

    ADS  Google Scholar 

  • Baqir, M.A., et al.: Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure. IEEE Photon. J. 11(4), 1–10 (2019)

    Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    ADS  Google Scholar 

  • Dabos, G., et al.: Thick-SOI Echelle grating for any-to-any wavelength routing interconnection in multi-socket computing environments. In: Optical Interconnects XVII, vol. 10109. International Society for Optics and Photonics (2017)

  • Ding, X., et al.: Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 136(44), 15684–15693 (2014)

    Google Scholar 

  • Farmani, H., Farmani, A.: Graphene sensing nanostructure for exact graphene layers identification at terahertz frequency. Physica E Low Dimension. Syst. Nanostruct. 124, 114375 (2020)

    Google Scholar 

  • Farmani, A., Mir, A.: Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photon. Technol. Lett. 31(8), 643–646 (2019)

    ADS  Google Scholar 

  • Farmani, A., Mir, A.: Nanosensors for street-lighting system. In: Nanosensors for Smart Cities, pp. 209–225. Elsevier (2020)

  • Farmani, A., Miri, M., Sheikhi, M.H.: Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure. Opt. Commun. 391, 68–76 (2017a)

    ADS  Google Scholar 

  • Farmani, A., et al.: Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct. 112, 404–414 (2017b)

    ADS  Google Scholar 

  • Farmani, A., Mir, A., Sharifpour, Z.: Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos–Hänchen effect. Appl. Surf. Sci. 453, 358–364 (2018)

    ADS  Google Scholar 

  • Farmani, H., Farmani, A., Biglari, Z.: A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Physica E Low Dimension. Syst. Nanostruct. 116, 1–10 (2020a)

    Google Scholar 

  • Farmani, A., et al.: Optical nanosensors for cancer and virus detections. In: Nanosensors for Smart Cities, pp. 419–432. Elsevier (2020b)

  • Gao, H., et al.: Surface plasmon polariton propagation and combination in Y-shaped metallic channels. Opt. Express 13(26), 10795–10800 (2005)

    ADS  Google Scholar 

  • Gao, Y., et al.: Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano 5(12), 9836–9844 (2011)

    Google Scholar 

  • Ghodrati, M., Farmani, A., Mir, A.: Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: a first-principle study. IEEE Sens. J. 19(17), 7373–7377 (2019)

    ADS  Google Scholar 

  • Glesk, I., et al.: Picosecond all-optical switching using nonlinear Mach–Zehnder with silicon subwavelength grating and photonic wire arms. Opt. Quantum Electron. 44(12–13), 613–621 (2012)

    Google Scholar 

  • Gong, Y., et al.: Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect. Opt. Express 19(11), 10193–10198 (2011a)

    ADS  Google Scholar 

  • Gong, Y., et al.: Unidirectional manipulation of surface plasmon polariton by dual-nanocavity in a T-shaped waveguide. Opt. Commun. 284(3), 795–798 (2011b)

    ADS  Google Scholar 

  • Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4(2), 83–91 (2010)

    ADS  Google Scholar 

  • Hamzavi-Zarghani, Z., et al.: Tunable mantle cloaking utilizing graphene metasurface for terahertz sensing applications. Opt. Express 27(24), 34824–34837 (2019)

    ADS  Google Scholar 

  • Haus, H.A., Lai, Y.: Theory of cascaded quarter wave shifted distributed feedback resonators. IEEE J. Quantum Electron. 28(1), 205–213 (1992)

    ADS  Google Scholar 

  • Hosseini, A., Massoud, Y.: A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 14(23), 11318–11323 (2006)

    ADS  Google Scholar 

  • Hu, B., Wang, Q.J., Zhang, Y.: Systematic study of the focal shift effect in planar plasmonic slit lenses. Nanotechnology 23(44), 1–9 (2012)

    Google Scholar 

  • Ji, J., et al.: Wavelength-polarization multiplexer for routing and detection of surface plasmon polaritons based on plasmonic gratings. ACS Photon. 8, 2115–2121 (2020)

    Google Scholar 

  • Jia, H., et al.: Five-port optical router based on silicon microring optical switches for photonic networks-on-chip. IEEE Photon. Technol. Lett. 28(9), 947–950 (2016)

    Google Scholar 

  • Lee, I.-S., et al.: Optical isotropy at terahertz frequencies using anisotropic metamaterials. Appl. Phys. Lett. 109(3), 1–4 (2016)

    Google Scholar 

  • Lin, X.-S., Huang, X.-G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33(23), 2874–2876 (2008)

    ADS  Google Scholar 

  • Mansuori, M., Zareei, G.H., Hashemi, H.: Reconfigurable optofluidic switch for generation of optical pulse width modulation based on tunable reflective interface. Appl. Opt. 54(28), E63–E68 (2015)

    ADS  Google Scholar 

  • Midolo, L., et al.: Electro-optic routing of photons from single quantum dots in photonic integrated circuits. arXiv preprint arXiv:http://arxiv.org/abs/1707.06522 (2017)

  • Mokhtar, A., Azizoglu, M.: Adaptive wavelength routing in all-optical networks. IEEE/ACM Trans. Netw. 6(2), 197–206 (1998)

    Google Scholar 

  • Mokri, K., Mozaffari, M.H.: Numerical design of a plasmonic nano-tweezer for realizing high optical gradient force. Opt. Laser Technol. 119, 1–5 (2019)

    Google Scholar 

  • Moradian, F., et al.: A multimode graphene plasmonic perfect absorber at terahertz frequencies. Physica E Low Dimens. Syst. Nanostruct. 122, 1–10 (2020a)

    Google Scholar 

  • Moradiani, F., et al.: Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Opt. Commun. 474, 1–9 (2020b)

    Google Scholar 

  • Mozaffari, M.H., Farmani, A.: On-chip single-mode optofluidic microresonator dye laser sensor. IEEE Sens. J. 20(7), 3556–3563 (2019a)

    ADS  Google Scholar 

  • Mozaffari, M.H., Ebnali-Heidari, M., Moravvej-Farshi, M.K.: A proposal for ultra-sensitive intensity-based biosensing via photonic crystal optofluidic biolaser. Laser Phys. 29(3), 1–6 (2019b)

    Google Scholar 

  • Nejad, H.E., Mir, A., Farmani, A.: Supersensitive and tunable nano-biosensor for cancer detection. IEEE Sens. J. 19(13), 4874–4881 (2019)

    ADS  Google Scholar 

  • Novotny, L., Van Hulst, N.: Antennas for light. Nat. Photon. 5(2), 83–90 (2011)

    ADS  Google Scholar 

  • Peng, X., et al.: Research on transmission characteristics of aperture-coupled square-ring resonator based filter. Opt. Commun. 294, 368–371 (2013)

    ADS  Google Scholar 

  • Rastgou, A., Bahramara, S., Moshtagh, J.: Flexible and robust distribution network expansion planning in the presence of distributed generators. Int. Trans. Electr. Energy Syst. 28(12), 1–8 (2018)

    Google Scholar 

  • Sadeghi, T., et al.: Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory. Appl. Phys. B 125(10), 189 (2019)

    ADS  Google Scholar 

  • Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5(9), 523–530 (2011)

    ADS  Google Scholar 

  • Stockman, M.I.: Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19(22), 22029–22106 (2011)

    ADS  Google Scholar 

  • Sun, S., et al.: Hybrid photonic-plasmonic nonblocking broadband 5× 5 router for optical networks. IEEE Photon. J. 10(2), 1–12 (2017)

    Google Scholar 

  • Tao, J., Wang, Q.J., Huang, X.G.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6(4), 753–759 (2011)

    Google Scholar 

  • Tucker, R.S.: The role of optics and electronics in high-capacity routers. J. Lightwave Technol. 24(12), 4655–4673 (2006)

    ADS  Google Scholar 

  • Wang, G., Lu, H., Liu, X.: Trapping of surface plasmon waves in graded grating waveguide system. Appl. Phys. Lett. 101(1), 1–7 (2012)

    Google Scholar 

  • Xu, P., et al.: 2× 2 optofluidic switch chip with an air shutter. Appl. Opt. 58(17), 4637–4641 (2019)

    ADS  Google Scholar 

  • Yin, S., et al.: Nanoparticle trapping and routing on plasmonic nanorails in a microfluidic channel. Opt. Express 28(2), 1357–1368 (2020)

    ADS  Google Scholar 

  • Zayats, A.V., Smolyaninov, I.I., Maradudin, A.A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3-4), 131–314 (2005)

    ADS  Google Scholar 

  • Zhang, Y., et al.: Four-channel THz wave routing switch based on magneto photonic crystals. Optik 181, 134–139 (2019)

    ADS  Google Scholar 

  • Zhao, H., Guang, X.G., Huang, J.: Novel optical directional coupler based on surface plasmon polaritons. Physica E Low-Dimension. Syst. Nanostruct. 40(10), 3025–3029 (2008)

    ADS  Google Scholar 

  • Zhou, S., et al.: Interlinked add-drop filter with amplitude modulation routing a fiber-optic microring to a lithium niobate microwaveguide. Opt. Lett. 42(8), 1496–1499 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Farmani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansuri, M., Mir, A. & Farmani, A. Numerical analysis of tunable nonlinear plasmonic router based on nanoscale ring resonators. Opt Quant Electron 52, 448 (2020). https://doi.org/10.1007/s11082-020-02568-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02568-2

Keywords

Navigation