Skip to main content
Log in

DAMSAT: An Eye in the Sky for Monitoring Tailings Dams

DAMSAT: Ein Instrument zur Überwachung von Tailingdämmen

DAMSAT: Un ojo en el cielo para monitorear los diques de colas

DAMSAT: 尾矿坝监测之“天眼”

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

During the past decade, there have been a number of catastrophic tailings dam failures. Affordable monitoring systems, as well as methods to assess the risk posed to communities living downstream of these structures, are needed. In recent years the availability and accuracy of remote sensing information has increased, whilst its cost has decreased. This paper provides an overview of DAMSAT, a web-based system that brings together Earth observation and other data to help governments and mining companies monitor tailing dams, and estimate the downstream risks they pose. The methods developed are being piloted in Peru at a number of tailings dams, with the overall goal of improving the decision making process and sharing of information with respect to managing these structures. Engagement with Peruvian stakeholders has shown that DAMSAT provides tools that can help government authorities both reduce the risks and increase the sustainability of mining.

Zusammenfassung

In den letzten zehn Jahren kam es zu einer Reihe von katastrophalen Tailingdammbrüchen. Es werden erschwingliche Überwachungssysteme sowie Methoden benötigt, die das Risiko für die stromabwärts von diesen Strukturen befindlichen Unterlieger bewerten. In den letzten Jahren hat die Verfügbarkeit und Genauigkeit von Fernerkundungsinformationen zugenommen, während ihre Kosten gesunken sind. Diese Studie gibt einen Überblick über ein webbasiertes System (DAMSAT), das Erdbeobachtungsdaten und weitere Informationen zusammenführt, um öffentliche Verwaltungen und Bergbauunternehmen bei der Überwachung von Bergbaudämmen zu unterstützen und die vorhandenen Risiken abzuschätzen. Die Methoden wurden an einer Reihe von Tailingdämmen in Peru mit der Zielstellung erprobt, Entscheidungsfindungsprozesse und den Informationsaustausch im Überwachungsmanagement zu verbessern. Die Zusammenarbeit mit peruanischen Interessenvertretern hat gezeigt, dass die Instrumente, welche DAMSAT bereitstellt, für Verwaltungsbehörden hilfreich sein können und sowohl Risiken reduziert als auch die Zukunftsfähigkeit des Bergbaus erhöht.

Resumen

Durante la última década se han producido varias fallas catastróficas de diques de colas. Son necesarios sistemas de vigilancia asequibles, así como métodos para evaluar el riesgo que corren las comunidades que viven aguas abajo de esas estructuras. En los últimos años, ha aumentado la disponibilidad y la precisión de la información de la teledetección y, además, su costo ha disminuido. En este trabajo se ofrece un panorama general de DAMSAT, un sistema basado en la web que reúne datos de observación de la Tierra y otros datos para ayudar a los gobiernos y a las empresas mineras a vigilar los diques de cola y a estimar los riesgos que plantean aguas abajo. Los métodos desarrollados se están probando en Perú en varios diques de colas, con el objetivo general de mejorar el proceso de adopción de decisiones y el intercambio de información con respecto a la gestión de esas estructuras. El compromiso con los interesados peruanos ha demostrado que DAMSAT proporciona instrumentos que pueden ayudar a las autoridades gubernamentales a reducir los riesgos y aumentar la sostenibilidad de la minería.

抽象

在过去的几十年里, 曾发生多起灾难性尾矿溃坝事故。有必要建立可负担的尾矿坝监测系统及库坝下游社区风险评估体系。近些年, 遥感信息的可获取性和信息精度都在提高, 但信息费用却在降低。文章概述了一种基于网络的DAMSAT系统, 它能够综合Earth Observation信息和其它数据, 帮助政府和采矿公司监测尾矿库, 评估库坝下游风险。该系统正在秘鲁很多尾矿库坝试用, 总体目标是从库坝管理角度提升决策过程和信息分享的水平。与秘鲁相关利益方的接触表明, DAMSAT提供了有助于政府降低风险和提高采矿可持续性的工具。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from Vick 1990)

Fig. 2

(Adapted from Martin and Davies 2000)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The inverse velocity method is used to calculate the rate of deformation of the slope of the dam (velocity) and to plot the inverse of the rate of deformation against time (i.e. the inverse velocity against time). As the velocity or rate of deformation increases, the inverse will tend towards zero, which is when failure occurs. For more details of this method, see Carlà et al. (2017).

References

  • Aguirregabiria, V, Luengo A (2016) A micro-econometric dynamic structural model of copper mining decisions. https://aguirregabiria.net/wpapers/copper_mining.pdf. Accessed 28 May 2020

  • Agurto-Detzel H, Bianchi M, Assumpção M, Schimmel B, Collaço C, Ciardelli JR, Barbosa J, Calhau J (2016) The tailings dam failure of 5 November 2015 in south-east Brazil and its preceding seismic sequence. Geophys Res Lett 43:4929–4936. https://doi.org/10.1002/2016GL069257

    Article  Google Scholar 

  • Alexander SS, Dein D, Gold DP (1973) The use of ERTS-1 MSS data for mapping strip mines and acid mine drainage in Pennsylvania. In: Proc symp on significant results obtained from earth resources technology satellite-1: vol 1, sect a: national aeronautics and space administration SP327, pp 569–575

  • Alonzo M, Van Den Hoek J, Ahmed N (2016) Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis. Sci Rep 6:35129. https://doi.org/10.1038/srep35129

    Article  Google Scholar 

  • Ayee J, Soreide T, Shukla GP, Le TM (2011) The political economy of the mining sector in Ghana. Policy research working paper no. WPS 5730. World Bank

  • Bebbington A, Williams M (2008) Water and mining conflicts in Peru, Mountain R&D, 28(3):190–195

  • Bowker LN, Chambers DM (2016) Root causes of tailings dam overtopping: the economics of risk and consequence. In: Proc 2nd international seminar on dam protection against overtopping, ISBN: 978-1-1889143-27-9

  • Bowker LN, Chambers DM (2017) In the dark shadow of the supercycle tailings failure risk and public liability reach all-time highs. Environments 4(4):75. https://doi.org/10.3390/environments4040075

    Article  Google Scholar 

  • Cambridge C, Shaw M (2019) Preliminary reflections on the failure of the Brumadinho tailings dam in January 2019. Dams Reserv 29(3):113–123

    Article  Google Scholar 

  • Carlà T, Intrieri E, Di Traglia F, Nolesini T, Gigli G, Casagli N (2017) Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides 14(2):517–534. https://doi.org/10.1007/s10346-016-0731-5

    Article  Google Scholar 

  • Carlà T, Intrieri E, Raspini F, Bardi F, Farina P, Ferretti A, Colombo D, Novali F, Casagli N (2019) Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci Rep 9:14137. https://doi.org/10.1038/s41598-019-50792-y

    Article  Google Scholar 

  • Celik T (2009) Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci Remote Sens Lett 6(4):772–776. https://doi.org/10.1109/LGRS.2009.2025059

    Article  Google Scholar 

  • Chetty P (2013) Monitoring of mine tailings using satellite and lidar data. In: Proc South African surveying and geomatics indaba (SASGI). https://www.ee.co.za/wp-content/uploads/2014/05/Prevlan-Chetty.pdf. Accessed 4 May 2020

  • Condon M (2017) Citizen scientists, data transparency and the mining industry. Nat Resour Environ 32(2):24–28

    Google Scholar 

  • Dale L (2019) Foiling the resource curse. Environ Forum May-June, pp 34–39

  • Davies MP (2002) Tailings impoundment failures: are geotechnical engineers listening. Geotech News 20(3):31–36

    Google Scholar 

  • De Carvalho DW (2019) The ore tailings dam rupture disaster in Mariana, Brazil 2015: what we have to learn from anthropogenic disasters. Nat Resour J 59(2):281–300

    Google Scholar 

  • Di Mauro M, Lumbroso D (2008) Hydrodynamic and loss of life modelling for the 1953 Canvey Island flood. Proc FLOODrisk. https://doi.org/10.1201/9780203883020.ch131

    Article  Google Scholar 

  • Franks DM (2015) Mountain movers: mining, sustainability and the agents of change, 1st edn. Routledge

  • Gamu J, Le Billon P, Spiegel S (2015) Extractive industries and poverty: a review of recent findings and linkage mechanisms. Extr Ind Soc 2(1):162–176

    Google Scholar 

  • Gholizadeh A, Saberioon M, Ben-Dor E, Borůvka L (2018) Monitoring of selected soil contaminants using proximal and remote sensing techniques: background, state-of-the-art and future perspectives. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2018.1447717

    Article  Google Scholar 

  • Hejmanowska B, Glowienka E, Michalowska K (2016) Free satellite imagery for monitoring a reclaimed sulphur mining region Tarnobrzeg, Poland. In: Proc baltic geodetic congress (BGC Geomatics), pp. 134–139. https://doi.org/10.1109/BGC.Geomatics.2016.32

  • Herrera G, Tomás R, Lopez-Sanchez JM, Delgado J, Mallorqui JJ, Duque S, Mulas J (2007) Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Eng Geol 90(3–4):148–159. https://doi.org/10.1016/j.enggeo.2007.01.001

    Article  Google Scholar 

  • Hui S, Charlebois L, Sun C (2015) Real-time monitoring for structural health, public safety, and risk management of mine tailings dams. Can J Earth Sci. https://tspace.library.utoronto.ca/bitstream/1807/82538/1/cjes-2017-0186.pdf. Accessed 12 June 2020

  • ICOLD (International Commission on Large Dams) (2001) Tailings dams: risk of dangerous occurrences, lessons learnt from practical experiences. United Nations Environmental Programme, Div of Technology, Industry and Economics, and International Commission on Large Dams, Bulletin 121

  • Johnstone WM (2012) Life safety modelling framework and performance measures to assess community protection systems: application to tsunami emergency preparedness and dam safety management. PhD thesis, Univ of British Columbia

  • Keaveny P (2019) Brumadinho dam collapse: mining industry needs radical change to avoid future disasters. https://theconversation.com/brumadinho-dam-collapse-mining-industry-needs-radical-change-to-avoid-future-disasters-112808. Accessed 4 May 2020

  • Ledwaba P, Nhlengetwa K (2016) When policy is not enough: prospects and challenges of artisanal and small-scale mining in South Africa. J Sustain Dev Law Policy 7(1):25–42

    Article  Google Scholar 

  • Leonard L (2017) State governance, participation and mining development: lessons learned from Dullstroom. Mpumalanga Politikon 44(2):327–345

    Article  Google Scholar 

  • Lumbroso D, Davison M (2018) Use of an agent-based model and Monte Carlo analysis to estimate the effectiveness of emergency management interventions to reduce loss of life during extreme floods. J Flood Risk Manag 11(S1):419–433

    Article  Google Scholar 

  • Lumbroso D, Tagg A (2011) Evacuation and loss of life modelling to enhance emergency response. In: Proc international symp on urban flood risk management

  • Lumbroso D, Sakamoto D, Johnstone WM, Tagg AF, Lence BJ (2011) The development of a life safety model to estimate the risk posed to people by dam failures and floods. Dams Reserv 21(1):31–43

    Article  Google Scholar 

  • Lumbroso D, McElroy C, Goff C, Collell M, Petkovšek G, Wetton M (2019) The potential to reduce the risks posed by tailings dams using satellite-based information. Int J Disaster Risk Reduct. https://doi.org/10.1016/j.ijdrr.2019.101209

    Article  Google Scholar 

  • Lumbroso D, Davison M, Body R, Petkovšek G (2020) Modelling the Brumadinho tailings dam failure, the subsequent loss of life and how it could have been reduced, submitted. Nat Hazard Earth Sys. https://www.nat-hazards-earth-syst-sci-discuss.net/nhess-2020-159/. Accessed 5 June 2020

  • Marcuccio S, Ullo S, Carminati M, Kanoun O (2019) Smaller satellites, larger constellations: trends and design issues for earth observation systems. IEEE Aerosp Electron Syst Mag 34(10):50–59

    Article  Google Scholar 

  • Martin TE, Davies MP (2000) Development and review of surveillance programs for tailings dams. AGRA Earth and Environmental Ltd, Burnaby, BC. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.520.7963andrep=rep1andtype=pdf. Accessed 4 May 2020

  • Martin TE, McRoberts EC (1999) Some considerations in the stability analysis of upstream tailings dams. In: Proc 6th international conf on tailings and mine waste, pp 287–302

  • McDevitt A (2017) Transparency and accountability initiatives in the extractives sector, K4D Helpdesk Report. Brighton, UK: Institute of Development Studies. https://assets.publishing.service.gov.uk/media/59784da140f0b65dce000002/082-Transparency-and-accountability-in-extractive-industries.pdf. Accessed 4 May 2020

  • Minerals Policy Institute (2014) Chronology of major tailings dam failures – updated with Mount Polley. https://www.mpi.org.au/2014/08/chronology-of-major-tailings-dam-failures/. Accessed 4 May 2020

  • Mining Journal (2019) Tailings spill at Doe Run's Cobriza mine. https://www.mining-journal.com/copper-news/news/1367271/tailings-spill-at-doe-runs-cobriza-mine. Accessed 28 May 2020

  • Mining Journal (2020) March underway to Brumadinho to mark year since fatal dam collapse. https://www.mining-journal.com/politics/news/1379365/march-underway-to-brumadinho-to-mark-year-since-fatal-dam-collapse. Accessed 28 May 2020

  • Mohamed MAAH, Samuels PG, Morris MW, Ghataora GS (2002) Improving the accuracy of prediction of breach formation through embankment dams and flood embankments. In: Proc international conf on fluvial hydraulic

  • Morris MW (2011) Breaching of earth embankments and dams. PhD thesis, The Open University, UK

  • Mulaba-Bafubiandi AF, Singh N (2018) Junior mining as innovation entrepreneurship in minerals industry in South Africa. In: Proc international conf on industrial engineering and operations management, pp 1892–1898

  • Nishijima M, Rocha FF (2020) An economic investigation of the dengue incidence as a result of a tailings dam accident in Brazil. J Environ Manag. https://doi.org/10.1016/j.jenvman.2019.109748

    Article  Google Scholar 

  • O’Neill S (2019) A machine learning revolution in disaster response, The Alan Turing Institute. https://www.turing.ac.uk/research/impact-stories/machine-learning-revolution-disaster-response. Accessed 12 June 2020

  • Palú MC, Julien PY (2019) A review of tailings dam failures in Brazil. In: Proc Conf: XXIII Simpósio Brasileiro De Recursos Hídricosat

  • Petkovšek G, Hasan MAAH, Lumbroso D, Roca Collell M (2020) A two-fluid simulation of tailings dam breaching. Mine Water Environ (in this issue)

  • Petley D (2019) Cobriza, Peru: another significant tailings dam failure. https://blogs.agu.org/landslideblog/2019/07/16/cobriza-mine-1/. Accessed 4 May 2020

  • Sachs JD, Warner AM (2001) The curse of natural resources. Eur Econ Rev 45(4):827–838

    Article  Google Scholar 

  • Scaioni M, Marsella M, Crosetto M, Tornatore V, Wang J (2018) Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors 18(11):3682. https://doi.org/10.3390/s18113682

    Article  Google Scholar 

  • Seifi A, Hosseinjanizadeh M, Ranjbar H, Honarman M (2019) Identification of acid mine drainage potential using Sentinel 2a imagery and field data. Mine Water Environ 38:707–717

    Article  Google Scholar 

  • Sonwalkar M, Fang L, Sun D (2010) Use of NDVI dataset for a GIS based analysis: a sample study of TAR Creek Superfund site. Ecol Inform 5(6):484–491

    Article  Google Scholar 

  • Thomas A, Edwards SJ, Engels J, McCormack H, Hopkins V, Holley R (2019) Earth observation data and satellite InSAR for the remote monitoring of tailings storage facilities: a case study of Cadia Mine, Australia. In: Paterson AJC, Fourie AB, Reid D (eds) Proc 22nd international conf on paste, thickened and filtered tailings, pp 183–195

  • Tomás R, Romero R, Mulas J, Marturià JJ, Mallorquí JJ, Lopez-Sanchez JM, Herrera G, Gutiérrez F, González PJ, Fernández J, Duque S, Concha-Dimas A, Cocksley G, Castañeda C, Carrasco D, Blanco P (2014) Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain. Environ Earth Sci 71:163–181

    Article  Google Scholar 

  • Tre-Altimira (2018) Tailings dam failure. https://site.tre-altamira.com/showcase/tailings-dam-failure. Accessed 4 May 2020

  • United Nations (UN) (2017) Earth observations for official statistics. Satellite imagery and geospatial data task team report. https://unstats.un.org/bigdata/taskteams/satellite/UNGWG_Satellite_Task_Team_Report_WhiteCover.pdf. Accessed 28 May 2020

  • Van der Werff H, Van der Meer F (2015) Sentinel-2 for mapping iron absorption feature parameters. Remote Sens 7:12635–12653. https://doi.org/10.3390/rs71012635

    Article  Google Scholar 

  • Vergilio C, Lacerda D, Oliveira B, Sartori É, Campos G, Pereira A, Aguiar D, Souza T, Almeid M, Thompson F, Rezende C (2020) Metal concentrations and biological effects from one of the largest mining disasters in the world (Brumadinho, Minas Gerais, Brazil). Sci Rep. https://doi.org/10.1038/s41598-020-62700-w

    Article  Google Scholar 

  • Vick S (1990) Planning, design, and analysis of tailings dams. Published by BiTech, Vancouver, ISBN: 978-0921095125

  • Xiao R, Shi H, He X, Li Z, Jia D, Yang Z (2019) Deformation monitoring of reservoir dams using GNSS: an application to south-to-north water diversion project, China. IEEE Access 7:54981–54992

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the work of Dr. Eleanor Ainscoe who did the analysis of the InSAR data for tailings dams in Peru. This work was made possible as part of the DAMSAT project, which was funded by a grant from the UK Space Agency’s International Partnership Programme. The team working on the project was led by HR Wallingford and comprises Telespazio VEGA UK, Siemens Corporate Technology, Smith School of Enterprise and the Environment at the University of Oxford, Satellite Application Catapult, Oxford Policy Management, Ciemam SAC, Peruvian National Foundation for Hydraulics Engineering, and School of Hydraulic Engineering at the National University of Cajamarca. More information on this work is available from https://www.damsat.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren Lumbroso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lumbroso, D., Collell, M.R., Petkovsek, G. et al. DAMSAT: An Eye in the Sky for Monitoring Tailings Dams. Mine Water Environ 40, 113–127 (2021). https://doi.org/10.1007/s10230-020-00727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00727-1

Keywords

Navigation