Skip to main content
Log in

Antimicrobial Activity of a Novel Freshwater Planctomycete Lacipirellula parvula PX69T

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract—

Planctomycetes are a phylogenetic group of bacteria with complex cell organization, large genomes and a wide spectrum of genome-encoded secondary metabolites. As suggested by analysis of available planctomycete genomes, these bacteria represent a promising source of potentially novel biologically active compounds. The number of cultured planctomycetes, however, remains limited. This study was undertaken in order to assess the presence of antimicrobial activity and its spectrum in the recently described freshwater planctomycete Lacipirellula parvula PX69T representing the novel family Lacipirellulaceae. The genome of strain PX69T contained 6 gene clusters encoding type III polyketide synthases, non-ribosomal peptide synthetases, and other secondary metabolites, which displayed low similarity to those in other bacteria. Strain PX69T was shown to exhibit antimicrobial activity against a number of test microorganisms. The highest antimicrobial activity, up to 83‒87% of growth inhibition, was observed against Staphylococcus aureus and Candida albicans. The medium composition and the cultivation time have been optimized in order to maximize antimicrobial activity of strain PX69T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Boedeker, C., Schüler, M., Reintjes, G., Jeske, O., van Teeseling, M.C., Jogler, M., Rast, P., Borchert, D., Devos, D.P., Kucklick, M., Schaffer, M., Kolter, R., van Niftrik, L., Engelmann, S., Amann, R., et al., Determining the bacterial cell biology of Planctomycetes, Nat. Commun., 2017, vol. 8, pp. 14853. https://doi.org/10.1038/ncomms14853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buckley, D.H., Huangyutitham, V., Nelson, T.A., Rumberger, A., and Thies, J.E., Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity, Appl. Environ. Microbiol., 2006, vol. 72, pp. 4522–4531.

    Article  CAS  Google Scholar 

  3. Cotter, P.D., Ross, R.P., and Hill, C., Bacteriocins ‒ a viable alternative to antibiotics?, Nat. Rev. Microbiol., 2013, vol. 11, pp. 95‒105.

    Article  CAS  Google Scholar 

  4. Dedysh, S.N. and Ivanova, A.A., Planctomycetes in boreal and subarctic wetlands: diversity patterns and potential ecological functions, FEMS Microbiol. Ecol., 2019, vol. 95. fiy227. https://doi.org/10.1093/femsec/fiy227

    Article  CAS  Google Scholar 

  5. Dedysh, S.N., Kulichevskaya, I.S., Beletsky, A.V., Ivanova, A.A., Rijpstra, W.I.C., Sinninghe Damsté, J.S., Mardanov, A.V., and Ravin, N.V., Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatales ord. nov. and Isosphaerales ord. nov., Syst. Appl. Microbiol., 2020, vol. 43, art. 126050. https://doi.org/10.1016/j.syapm.2019.126050

    Article  PubMed  PubMed Central  Google Scholar 

  6. Donadio, S., Monciardini, P., and Sosio, M., Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics, Nat. Prod. Rep., 2007, vol. 24, pp. 1073‒1109. https://doi.org/10.1039/b514050c

    Article  CAS  PubMed  Google Scholar 

  7. Fischbach, M.A. and Walsh, C.T., Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms, Chem. Rev., 2006, vol. 106, pp. 3468‒3496.

    Article  CAS  Google Scholar 

  8. Fuerst, J.A., The planctomycetes: emerging models for microbial ecology, evolution and cell biology, Microbiology (SGM), 1995, vol. 141, pp. 1493–1506.

    Article  CAS  Google Scholar 

  9. Glöckner, F.O., Kube, M., Bauer, M., Teeling, H., Lombardot, T., Ludwig, W., Gade, D., Beck, A., Borzym, K., Heitmann, K., Rabus, R., Schlesner, H., Amann, R., and Reinhardt, R., Complete genome sequence of the marine planctomycete Pirellula sp. strain 1, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 8298–8303.

    Article  Google Scholar 

  10. Graça, A.P., Calisto, R., and Lage, O.M., Planctomycetes as novel source of bioactive molecules, Front. Microbiol. 2016, vol. 7, art. 1241. https://doi.org/10.3389/fmicb.2016.01241

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guo, M., Han, X., Jin, T., Zhou, L., Yang, J., Li, Z., Chen, J., Geng, B., Zou, Y., Wan, D., Li, D., Dai, W., Wang, H., Chen, Y., Ni, P., et al., Genome sequences of three species in the family Planctomycetaceae,J. Bacteriol., 2012, vol. 194, pp. 3740‒3741.

    Article  CAS  Google Scholar 

  12. Jeske, O., Jogler, M., Petersen, J., Sikorski, J., and Jogler, C., From genome mining to phenotypic microarrays: Planctomycetes as source for novel bioactive molecules, Antonie van Leeuwenhoek, 2013, vol. 104, pp. 551‒567. https://doi.org/10.1007/s10482-013-0007-1

    Article  CAS  PubMed  Google Scholar 

  13. Jeske, O., Surup, F., Ketteniß, M., Rast, P., Förster, B., Jogler, M., Wink, J., and Jogler, C., Developing techniques for the utilization of Planctomycetes as producers of bioactive molecules, Front. Microbiol., 2016, vol. 7, art. 1242. https://doi.org/10.3389/fmicb.2016.01242

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ivanova, A.A., Naumoff, D.G., Miroshnikov, K.K., Liesack, W., and Dedysh, S.N., Comparative genomics of four Isosphaeraceae planctomycetes: a common pool of plasmids and glycoside hydrolase genes shared by Paludisphaera borealis PX4T, Isosphaera pallida IS1BT, Singulisphaera acidiphila DSM 18658T, and strain SH-PL62, Front. Microbiol., 2017, vol. 8, art. 412. https://doi.org/10.3389/fmicb.2017.00412

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lage, O.M. and Bondoso, J., Planctomycetes and macroalgae, a striking association, Front. Microbiol., 2014, vol. 5, art. 267. https://doi.org/10.3389/fmicb.2014.00267

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ravin, N.V., Rakitin, A.L., Ivanova, A.A., Beletsky, A.V., Kulichevskaya, I.S., Mardanov, A.V., and Dedysh, S.N., Genome analysis of Fimbriiglobus ruber SP5T, a planctomycete with confirmed chitinolytic capability, Appl. Environ. Microbiol., 2018, vol. 84, art. e02645-1. https://doi.org/10.1128/AEM.02645-17

    Article  Google Scholar 

  17. Reintjes, G., Arnosti, C., Fuchs, B.M., and Amann, R., An alternative polysaccharide uptake mechanism of marine bacteria, ISME J., 2017, vol. 11, pp. 1640‒1650.

    Article  CAS  Google Scholar 

  18. Schwarzer, D., Finking, R., and Marahiel, M.A., Nonribosomal peptides: from genes to products, Nat. Prod. Rep., 2003, vol. 20, pp. 275‒287.

    Article  CAS  Google Scholar 

  19. Staley, J.T., Fuerst, J.A., Giovannoni, S., and Schlesner, H., The order Planctomycetales and the genera Planctomyces, Pirellula, Gemmata, and Isosphaera, in The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H., Eds., NY: Springer, 1992, pp. 3710–3731.

    Google Scholar 

  20. Tracanna, V., de Jong, A., Medema, M.H., and Kuipers, O.P., Mining prokaryotes for antimicrobial compounds: from diversity to function, FEMS Microbiol. Rev., 2017, vol. 41, pp. 417‒442.

    Article  CAS  Google Scholar 

  21. Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H.U., Bruccoleri, R., Lee, S.Y., Fischbach, M.A., Müler, R., Wohlleben, W., Breitling, R., Takano, E., and Medema, M.H., antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters, Nucl. Acids Res., 2015, vol. 43. W237–W243.

    Article  CAS  Google Scholar 

  22. Wiegand, S., Jogler, M., and Jogler C., On the maverick Planctomycetes,FEMS Microbiol. Rev., 2018, vol. 42, pp. 739–760.

    Article  CAS  Google Scholar 

  23. Wiegand, S., Jogler, M., Boedeker, C., Pinto, D., Vollmers, J., Rivas-Marín, E., Kohn, T., Peeters, S.H., Heuer, A., Rast, P., Oberbeckmann, S., Bunk, B., Jeske, O., Meyerdierks, A., Storesund, J.E., et al., Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology, Nat. Microbiol., 2020, vol. 5, pp. 126‒140. https://doi.org/10.1038/s41564-019-0588-1

    Article  CAS  PubMed  Google Scholar 

  24. Yadav, S., Vaddavalli, R., Siripuram, S., Eedara, R.V.V., Yadav, S., Rabishankar, O., Lodha, T., Chintalapati, S., and Chintalapati, V., Planctopirus hydrillae sp. nov., an antibiotic producing planctomycete isolated from the aquatic plant Hydrilla and its whole genome shotgun sequence analysis, J. Antibiotics, 2018, vol. 71, pp. 575‒583.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 16-14-10210.

Author information

Authors and Affiliations

Authors

Contributions

The idea and scheme of the work were proposed by SD. Genome analysis for strain PX69Т was carried out by VS. Experiments on planctomycete cultivation, extraction of its secondary metabolites, and determination of their antimicrobial activity were carried out by SB and VS. SB and SD wrote the manuscript. All authors discussed the experimental results.

Corresponding author

Correspondence to S. N. Dedysh.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belova, S.E., Saltykova, V.A. & Dedysh, S.N. Antimicrobial Activity of a Novel Freshwater Planctomycete Lacipirellula parvula PX69T . Microbiology 89, 503–509 (2020). https://doi.org/10.1134/S0026261720050045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720050045

Keywords:

Navigation