Skip to main content

Advertisement

Log in

Community Organization and Metagenomics of Bacterial Assemblages Across Local Scale pH Gradients in Northern Forest Soils

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Soil pH has shown to predict bacterial diversity, but mechanisms are still poorly understood. To investigate how bacteria distribute themselves as a function of soil pH, we assessed community composition, diversity, assembly, and gene abundance across local (ca. 1 km) scale gradients in soil pH from ~ 3.8 to 6.5 created by differences in soil parent material in three northern forests. Plant species were the same on all sites, with no evidence of agriculture in the past. Concentrations of extractable calcium, iron, and phosphorus also varied significantly across the pH gradients. Among taxa, Alphaproteobacteria and Acidobacteria were more common in soils with acidic pH values. Overall richness and diversity of OTUs peaked at intermediate pH values. Variations in OTU richness and diversity also had a quadratic fit with concentrations of extractable calcium and phosphorus. Community assembly was via homogeneous deterministic processes in soils with acidic pH values, whereas stochastic processes dominated in soils with near-neutral pH values. Although we expected selection via genes for acid tolerance response in acidic soils, genes for genetic information processing were more selective. Taxa in higher pH soils had differential abundance of transporter genes, suggesting adaptation to acquire metabolic substrates from soils. Soil bacterial communities in northern forest soils are incredibly diverse, and we still have much to learn about how soil pH and co-varying soil parameters directly drive gene selection in this critical component of ecosystem structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Saf 3:1–20

    CAS  PubMed  Google Scholar 

  2. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Malik AA, Thomson BC, Whiteley AS, Bailey M, Griffiths RI (2017) Bacterial physiological adaptations to contrasting edaphic conditions identified using landscape scale metagenomics. MBio 8:e00799–e00717

    PubMed  PubMed Central  Google Scholar 

  4. Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK (2018) Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. The ISME journal 12:1072–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    PubMed  Google Scholar 

  7. Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Talley K, Alexov E (2010) On the pH-optimum of activity and stability of proteins. Proteins 78:2699–2706

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kashket ER (1985) The proton motive force in bacteria: a critical assessment of methods. Annu Rev Microbiol 39:219–242

    CAS  PubMed  Google Scholar 

  10. Lund P, Tramonti A, De Biase D (2014) Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 38:1091–1125

    CAS  PubMed  Google Scholar 

  11. Xu Y, Zhao Z, Tong W, Ding Y, Liu B, Shi Y, Wang J, Sun S, Liu M, Wang Y, Qi Q (2020) An acid-tolerance response system protecting exponentially growing Escherichia coli. Nat Commun 11:1–3

    Google Scholar 

  12. Nguyen NL, Yu WJ, Gwak JH, Kim SJ, Park SJ, Herbold CW, Kim JG, Jung MY, Rhee SK (2018) Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils. Front Microbiol 9:1982

    PubMed  PubMed Central  Google Scholar 

  13. Vergara E, Neira G, González C, Cortez D, Dopson M, Holmes DS (2020) Evolution of predicted acid resistance mechanisms in the extremely acidophilic Leptospirillum genus. Genes 11:389

    CAS  PubMed Central  Google Scholar 

  14. Rao M, Streur TL, Aldwell FE, Cook GM (2001) Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG. Microbiology 147:1017–1024

    CAS  PubMed  Google Scholar 

  15. Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pommerening-Röser A, Koops HP (2005) Environmental pH as an important factor for the distribution of urease positive ammonia-oxidizing bacteria. Microbiol Res 160:27–35

    PubMed  Google Scholar 

  17. Gong L, Ren C, Xu Y (2020) GlnR negatively regulates glutamate-dependent acid resistance in Lactobacillus brevis. Appl Environ Microbiol 86:e02615–e02619

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Barnett SE, Youngblut ND, Buckley DH (2020) Soil characteristics and land-use drive bacterial community assembly patterns. FEMS Microbiol Ecol 96:fiz194

    PubMed  Google Scholar 

  19. Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc London Ser B 366:2351–2363

    Google Scholar 

  20. Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356

    PubMed  PubMed Central  Google Scholar 

  21. Zhou J, Ning D (2017) Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev 81:e00002–e00017

    PubMed  PubMed Central  Google Scholar 

  22. Driscoll CT, Lawrence GB, Bulger AJ et al (2001) Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies: the effects of acidic deposition in the northeastern United States include the acidification of soil and water, which stresses terrestrial and aquatic biota. BioScience 51:180–198

    Google Scholar 

  23. Buckley DH, Schmidt TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Microb Ecol 42:11–21

    CAS  PubMed  Google Scholar 

  24. Ogilvie IH (1902) Glacial phenomena in the Adirondacks and Champlain Valley. J Geol 10:397–412

    Google Scholar 

  25. Dyer JM (2006) Revisiting the deciduous forests of eastern North America. BioScience 56:341–352

    Google Scholar 

  26. Bailey SW, Brousseau PA, McGuire KJ, Ross DS (2014) Influence of landscape position and transient water table on soil development and carbon distribution in a steep, headwater catchment. Geoderma 226:279–289

    Google Scholar 

  27. Darby BA, Goodale CL, Chin NA, Fuss CB, Lang AK, Ollinger SV, Lovett GM (2020) Depth patterns and connections between gross nitrogen cycling and soil exoenzyme activities in three northern hardwood forests. Soil Biol Biochem 147:107836

    CAS  Google Scholar 

  28. Paratley RD, Fahey TJ (1986) Vegetation-environment relations in a conifer swamp in central New York. Bull Torrey Bot Club 113:357–371

    Google Scholar 

  29. Shanley JB, Sundquist ET, Kendall C (1995) Water, energy, and biogeochemical budget research at Sleepers River Research Watershed, Vermont. US Geological Survey

  30. Christopher SF, Page BD, Campbell J, Mitchell MJ (2006) Contrasting stream water NO3− and Ca2+ in two nearly adjacent catchments: the role of soil Ca and forest vegetation. Glob Chang Biol 12:364–381

    Google Scholar 

  31. Karp NA, Lilley KS (2009) Investigating sample pooling strategies for DIGE experiments to address biological variability. Proteomics 9:388–397

    CAS  PubMed  Google Scholar 

  32. Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416

    CAS  Google Scholar 

  33. Kozich JJ, Westcott S, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pepe-Ranney C, Campbell AN, Koechli CN, Berthrong S, Buckley DH (2016) Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Front Microbiol 7:703

    PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620

    CAS  PubMed  Google Scholar 

  36. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn D, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  PubMed  Google Scholar 

  38. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Knight R, Maxwell P, Birmingham A et al (2007) PyCogent: a toolkit for making sense from sequence. Genome Biol 8:R171

    PubMed  PubMed Central  Google Scholar 

  40. Nadeau SA, Roco CA, Debenport SJ, Anderson TR, Hofmeister KL, Walter MT, Shapleigh JP (2019) Metagenomic analysis reveals distinct patterns of denitrification gene abundance across soil moisture, nitrate gradients. Environ Microbiol 21:1255–1266

    CAS  PubMed  Google Scholar 

  41. Roco CA, Dörsch P, Booth JG, Pepe-Ranney C, Groffman PM, Fahey TJ, Yavitt JB, Shapleigh JP (2019) Using metagenomics to reveal landscape scale patterns of denitrifiers in a montane forest ecosystem. Soil Biol Biochem 138:107585

    CAS  Google Scholar 

  42. Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 39–54

    Google Scholar 

  43. Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Google Scholar 

  44. Camargo JA (1993) Must dominance increase with the number of subordinate species in competitive interactions? J Theor Biol 161:537–542

    Google Scholar 

  45. Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H (2018) vegan: Community ecology package

  47. R Core Team (2018) R: A Language and Environment for Statistical Computing

  48. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: {R} tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    CAS  PubMed  Google Scholar 

  49. Levins R (1968) Evolution in changing environments. Princeton University Press, Princeton

    Google Scholar 

  50. Pandit SN, Kolasa J, Cottenie K (2009) Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90:2253–2262

    PubMed  Google Scholar 

  51. Kim J, Kim MS, Koh AY, Xie Y, Zhan X (2016) FMAP: functional mapping and analysis pipeline for metagenomics and metatranscriptomics studies. BMC Bioinformatics 17:420

    PubMed  PubMed Central  Google Scholar 

  52. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    CAS  PubMed  Google Scholar 

  53. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(suppl_1):D277–D280

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2007) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    PubMed  PubMed Central  Google Scholar 

  55. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605

    PubMed  Google Scholar 

  56. Dalman MR, Deeter A, Nimishakavi G, Duan ZH (2012) Fold change and p-value cutoffs significantly alter microarray interpretations. BMC Bioinformatics 13:S11

    PubMed  PubMed Central  Google Scholar 

  57. Kaiser K, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schöning I, Schrumpf M, Daniel R (2016) Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci Rep 6:33696

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Baker SR, Watmough SA, Eimers MC (2015) Phosphorus forms and response to changes in pH in acid-sensitive soils on the Precambrian Shield. Can J Soil Sci 95:95–108

    CAS  Google Scholar 

  59. Kabata-Pendias A (2010) Trace elements in soils and plants. CRC press, Boca Raton

    Google Scholar 

  60. Zhang Y, Shen H, He X, Thomas BW, Lupwayi NZ, Hao X, Thomas MC, Shi X (2017) Fertilization shapes bacterial community structure by alteration of soil pH. Front Microbiol 8:1325

    PubMed  PubMed Central  Google Scholar 

  61. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    PubMed  Google Scholar 

  62. Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, Meiners T, Müller C, Obermaier E, Prati D, Socher SA (2104) Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol 4:3514–3524

    Google Scholar 

  63. MacDonald ZG, Nielsen SE, Acorn JH (2017) Negative relationships between species richness and evenness render common diversity indices inadequate for assessing long-term trends in butterfly diversity. Biodivers Conserv 26:617–629

    Google Scholar 

  64. Stirling G, Wilsey B (2001) Empirical relationships between species richness, evenness, and proportional diversity. Am Nat 158:286–299

    CAS  PubMed  Google Scholar 

  65. Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Google Scholar 

  66. Wang J, Meier S, Soininen J, Casamayor EO, Pan F, Tang X, Yang X, Zhang Y, Wu Q, Zhou J, Shen J (2017) Regional and global elevational patterns of microbial species richness and evenness. Ecography 40:393–402

    Google Scholar 

  67. Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654

    PubMed  Google Scholar 

  68. Brislawn CJ, Graham EB, Dana K, Ihardt P, Fansler SJ, Chrisler WB, Cliff JB, Stegen JC, Moran JJ, Bernstein HC (2019) Forfeiting the priority effect: turnover defines biofilm community succession. ISME J 13:1865–1877

    PubMed  PubMed Central  Google Scholar 

  69. Azuma Y, Ota M (2009) An evaluation of minimal cellular functions to sustain a bacterial cell. BMC Syst Biol 3:111

    PubMed  PubMed Central  Google Scholar 

  70. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Andersson S, Nilsson SI (2001) Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biol Biochem 33:1181–1191

    CAS  Google Scholar 

  72. Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a US Department of Agriculture (USDA), National Institute of Food and Agriculture (NIFA), Hatch project. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of NIFA or the USDA. We thank the ad hoc reviewers for comments and suggestions that greatly improved the clarity of the presentation.

Funding

This work was supported by a US Department of Agriculture (USDA), National Institute of Food and Agriculture (NIFA), Hatch project (1007286). Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of NIFA or the USDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph B. Yavitt.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavitt, J.B., Roco, C.A., Debenport, S.J. et al. Community Organization and Metagenomics of Bacterial Assemblages Across Local Scale pH Gradients in Northern Forest Soils. Microb Ecol 81, 758–769 (2021). https://doi.org/10.1007/s00248-020-01613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01613-7

Keywords

Navigation