Skip to main content
Log in

Comparative Study of Graphene Oxide-Gelatin Aerogel Synthesis: Chemical Characterization, Morphologies and Functional Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Graphene oxide (GO)–gelatin (G) aerogels were synthesized by covalent and noncovalent methods, changing on the synthesis the GO:G ratio and the pH of the GO suspension, evaluating the physical, chemical, and functional properties of these materials. Comparatively, low GO:G ratios with alkali GO suspension promoted GO–G interactions for covalent aerogels. In contrast, high GO:G ratios under acidic conditions promoted noncovalent interactions. Scanning electron microscopy showed heterogeneous structures with pore sizes of 53.26 ± 25.53 µm and 25.31 ± 10.38 µm for covalent and noncovalent aerogels, respectively. The synthesis method did not influence the surface charge; however, differences were depending on the GO content and their chemical activation, shifting from 15.63 ± 0.55 mV to − 20.53 ± 1.07 mV. Noncovalent aerogels presented higher absorption ratios in phosphate-buffered saline (PBS) solution (35.5 ± 2.4 gPBS/gaerogel–49.6 ± 3.8 gPBS/gaerogel) than covalent aerogels. Therefore, due to these properties, noncovalent aerogels could be more useful than covalent aerogels for absorption potential applications, as biomedicine or water-treatment, where the promotion of surface interactions and high absorption capability is desired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Hsing, U. Schubert, Aerogels-airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (1998)

    Article  Google Scholar 

  2. S.K.H. Gulrez, S. Al-Assaf, G.O. Phillips, Hydrogels: methods of preparation, characterisation and applications, in Progress in Molecular and Environmental Bioengineering—From Analysis and Modeling to Technology Applications, ed. by A. Carpi (InTech, Croatia, 2011)

    Google Scholar 

  3. S. Plazzotta, S. Calligaris, L. Manzocco, Innovative bioaerogel-like materials from fresh-cut salad waste via supercritical-CO2-drying. Innov. Food Sci. Emerg. Technol. 47, 485–492 (2018). https://doi.org/10.1016/j.ifset.2018.04.022

    Article  CAS  Google Scholar 

  4. J. Siepmann, R.A. Siegel, M.J. Rathbone, Controlled Release Society, eds., Fundamentals and Applications of Controlled Release Drug Delivery. Springer : Controlled Release Society, New York, 2012

  5. H. Nassira, A. Sánchez-Ferrer, J. Adamcik, S. Handschin, H. Mahdavi, N. Taheri Qazvini, R. Mezzenga, Gelatin-graphene nanocomposites with ultralow electrical percolation threshold. Adv. Mater. 28, 6914–6920 (2016). https://doi.org/10.1002/adma.201601115

    Article  CAS  PubMed  Google Scholar 

  6. S. Gorgieva, V. Kokol, Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives, in Biomaterials Applications for Nanomedicine, ed. by R. Pignatello (InTech, Croatia, 2011)

    Google Scholar 

  7. B. Mohanty, H.B. Bohidar, Microscopic structure of gelatin coacervates. Int. J. Biol. Macromol. 36, 39–46 (2005). https://doi.org/10.1016/j.ijbiomac.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  8. L. Baldino, S. Concilio, S. Cardea, E. Reverchon, Interpenetration of natural polymer aerogels by supercritical drying. Polymers. 8, 106 (2016). https://doi.org/10.3390/polym8040106

    Article  CAS  PubMed Central  Google Scholar 

  9. G. Shim, M.-G. Kim, J.Y. Park, Y.-K. Oh, Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv. Drug Deliv. Rev. 105, 205–227 (2016). https://doi.org/10.1016/j.addr.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  10. J. Lin, X. Chen, P. Huang, Graphene-based nanomaterials for bioimaging. Adv. Drug Deliv. Rev. 105, 242–254 (2016). https://doi.org/10.1016/j.addr.2016.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S.-H. Lee, M. Kotal, J.-H. Oh, P. Sennu, S.-H. Park, Y.-S. Lee, I.-K. Oh, Nanohole-structured, iron oxide-decorated and gelatin-functionalized graphene for high rate and high capacity Li-Ion anode. Carbon 119, 355–364 (2017). https://doi.org/10.1016/j.carbon.2017.04.031

    Article  CAS  Google Scholar 

  12. C. Liu, H. Liu, A. Xu, K. Tang, Y. Huang, C. Lu, In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal. J. Alloy. Compd. 714, 522–529 (2017). https://doi.org/10.1016/j.jallcom.2017.04.245

    Article  CAS  Google Scholar 

  13. J. An, Y. Gou, C. Yang, F. Hu, C. Wang, Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater. Sci. Eng. C 33, 2827–2837 (2013). https://doi.org/10.1016/j.msec.2013.03.008

    Article  CAS  Google Scholar 

  14. G. Chen, C. Qiao, Y. Wang, J. Yao, Synthesis of biocompatible gelatin-functionalised graphene nanosheets for drug delivery applications. Aust. J. Chem. 67, 1532 (2014). https://doi.org/10.1071/CH13678

    Article  CAS  Google Scholar 

  15. Y. Piao, B. Chen, Self-assembled graphene oxide-gelatin nanocomposite hydrogels: characterization, formation mechanisms, and pH-sensitive drug release behavior. J. Polym. Sci. Part B Polym. Phys. 53, 356–367 (2015). https://doi.org/10.1002/polb.23636

    Article  CAS  Google Scholar 

  16. H. Liu, J. Cheng, F. Chen, D. Bai, C. Shao, J. Wang, P. Xi, Z. Zeng, Gelatin functionalized graphene oxide for mineralization of hydroxyapatite: biomimetic and in vitro evaluation. Nanoscale. 6, 5315 (2014). https://doi.org/10.1039/c4nr00355a

    Article  CAS  PubMed  Google Scholar 

  17. Y. Piao, B. Chen, One-pot synthesis and characterization of reduced graphene oxide–gelatin nanocomposite hydrogels. RSC Advances. 6, 6171–6181 (2016). https://doi.org/10.1039/C5RA20674J

    Article  CAS  Google Scholar 

  18. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  19. A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, I. Dékány, Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003). https://doi.org/10.1021/la026525h

    Article  CAS  Google Scholar 

  20. B. Boeckx, G. Maes, Experimental and theoretical observation of different intramolecular H-bonds in lysine conformations. J. Phys. Chem. B. 116, 12441–12449 (2012). https://doi.org/10.1021/jp306916e

    Article  CAS  PubMed  Google Scholar 

  21. E. Garand, M.Z. Kamrath, P.A. Jordan, A.B. Wolk, C.M. Leavitt, A.B. McCoy, S.J. Miller, M.A. Johnson, Determination of noncovalent docking by infrared spectroscopy of cold gas-phase complexes. Science 335, 694–698 (2012). https://doi.org/10.1126/science.1214948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N.A. Kumar, H.-J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.-B. Baek, Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6, 1715–1723 (2012). https://doi.org/10.1021/nn204688c

    Article  CAS  PubMed  Google Scholar 

  23. S. Bose, T. Kuila, MdE Uddin, N.H. Kim, A.K.T. Lau, J.H. Lee, In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51, 5921–5928 (2010). https://doi.org/10.1016/j.polymer.2010.10.014

    Article  CAS  Google Scholar 

  24. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prudhomme, I.A. Aksay, R. Car, Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Letters. 8, 36–41 (2008). https://doi.org/10.1021/nl071822y

    Article  CAS  PubMed  Google Scholar 

  25. V.K. Rana, M.-C. Choi, J.-Y. Kong, G.Y. Kim, M.J. Kim, S.-H. Kim, S. Mishra, R.P. Singh, C.-S. Ha, Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macromol. Mater. Eng. 296, 131–140 (2011). https://doi.org/10.1002/mame.201000307

    Article  CAS  Google Scholar 

  26. S. Makharza, O. Vittorio, G. Cirillo, S. Oswald, E. Hinde, M. Kavallaris, B. Büchner, M. Mertig, S. Hampel, Graphene oxide–gelatin nanohybrids as functional tools for enhanced carboplatin activity in neuroblastoma cells. Pharm. Res. 32, 2132–2143 (2015). https://doi.org/10.1007/s11095-014-1604-z

    Article  CAS  PubMed  Google Scholar 

  27. C. Wan, M. Frydrych, B. Chen, Strong and bioactive gelatin–graphene oxide nanocomposites. Soft Matter 7, 6159 (2011). https://doi.org/10.1039/c1sm05321c

    Article  CAS  Google Scholar 

  28. C. Su, M. Acik, K. Takai, J. Lu, S. Hao, Y. Zheng, P. Wu, Q. Bao, T. Enoki, Y.J. Chabal, K. Ping Loh, Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat Commun. 3, 1298 (2012). https://doi.org/10.1038/ncomms2315

    Article  CAS  PubMed  Google Scholar 

  29. B. Chen, L. Wang, S. Gao, Recent advances in aerobic oxidation of alcohols and amines to imines. ACS Catal. 5, 5851–5876 (2015). https://doi.org/10.1021/acscatal.5b01479

    Article  CAS  Google Scholar 

  30. W. Wang, Z. Wang, Y. Liu, N. Li, W. Wang, J. Gao, Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength. Mater. Res. Bull. 47, 2245–2251 (2012). https://doi.org/10.1016/j.materresbull.2012.05.060

    Article  CAS  Google Scholar 

  31. E.M. Zadeh, A. Yu, L. Fu, M. Dehghan, I. Sbarski, I. Harding, Physical and thermal characterization of graphene oxide modified gelatin-based thin films. Polym. Compos. 35, 2043–2049 (2014). https://doi.org/10.1002/pc.22865

    Article  CAS  Google Scholar 

  32. K. Min, T.H. Han, J. Kim, J. Jung, C. Jung, S.M. Hong, C.M. Koo, A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films. J. Colloid Interface Sci. 383, 36–42 (2012). https://doi.org/10.1016/j.jcis.2012.06.021

    Article  CAS  PubMed  Google Scholar 

  33. Z. Lei, N. Christov, X.S. Zhao, Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ. Sci. 4, 1866 (2011). https://doi.org/10.1039/c1ee01094h

    Article  CAS  Google Scholar 

  34. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53, 38–49 (2013). https://doi.org/10.1016/j.carbon.2012.10.013

    Article  CAS  Google Scholar 

  35. S.M. Ahsan, C.M. Rao, The role of surface charge in the desolvation process of gelatin: implications in nanoparticle synthesis and modulation of drug release. Int. J. Nanomed. 12, 795–808 (2017). https://doi.org/10.2147/IJN.S124938

    Article  CAS  Google Scholar 

  36. C. Bastioli, Rapra Technology Limited, eds., Handbook of Biodegradable Polymers, Rapra Technology, Shrewsbury, 2005

  37. M. Ramos, A. Valdés, A. Beltrán, M. Garrigós, Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings. 6, 41 (2016). https://doi.org/10.3390/coatings6040041

    Article  CAS  Google Scholar 

  38. S. Mohammadi, H. Keshvari, M. Eskandari, S. Faghihi, Graphene oxide–enriched double network hydrogel with tunable physico-mechanical properties and performance. React. Funct. Polym. 106, 120–131 (2016). https://doi.org/10.1016/j.reactfunctpolym.2016.07.015

    Article  CAS  Google Scholar 

  39. H. Fan, W. Shen, Gelatin-based microporous carbon nanosheets as high performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 4, 1328–1337 (2016). https://doi.org/10.1021/acssuschemeng.5b01354

    Article  CAS  Google Scholar 

  40. S.R. Shin, C. Zihlmann, M. Akbari, P. Assawes, L. Cheung, K. Zhang, V. Manoharan, Y.S. Zhang, M. Yüksekkaya, K. Wan, M. Nikkhah, M.R. Dokmeci, X.S. Tang, A. Khademhosseini, Reduced graphene oxide-GelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small 12, 3677–3689 (2016). https://doi.org/10.1002/smll.201600178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C. Cha, S.R. Shin, X. Gao, N. Annabi, M.R. Dokmeci, X.S. Tang, A. Khademhosseini, Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small 10, 514–523 (2014). https://doi.org/10.1002/smll.201302182

    Article  CAS  PubMed  Google Scholar 

  42. J.H. Lee, Y. Lee, Y.C. Shin, M.J. Kim, J.H. Park, S.W. Hong, B. Kim, J.-W. Oh, K.D. Park, D.-W. Han, In situ forming gelatin/graphene oxide hydrogels for facilitated C2C12 myoblast differentiation. Appl. Spectrosc. Rev. 51, 527–539 (2016). https://doi.org/10.1080/05704928.2016.1165686

    Article  CAS  Google Scholar 

  43. Y. Piao, B. Chen, Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels. Int. J. Biol. Macromol. 101, 791–798 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.155

    Article  CAS  PubMed  Google Scholar 

  44. E.-P. Ng, S. Mintova, Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater. 114, 1–26 (2008). https://doi.org/10.1016/j.micromeso.2007.12.022

    Article  CAS  Google Scholar 

  45. G. Horvat, M. Pantić, Ž. Knez, Z. Novak, Encapsulation and drug release of poorly water soluble nifedipine from bio-carriers. J. Non-Cryst. Solids 481, 486–493 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.11.037

    Article  CAS  Google Scholar 

  46. M. Salgado, F. Santos, S. Rodríguez-Rojo, R.L. Reis, A.R.C. Duarte, M.J. Cocero, Development of barley and yeast β-glucan aerogels for drug delivery by supercritical fluids. J. CO2 Utiliz. 22, 262–269 (2017). https://doi.org/10.1016/j.jcou.2017.10.006

    Article  CAS  Google Scholar 

  47. M. Martins, A.A. Barros, S. Quraishi, P. Gurikov, S.P. Raman, I. Smirnova, A.R.C. Duarte, R.L. Reis, Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercritic. Fluids. 106, 152–159 (2015). https://doi.org/10.1016/j.supflu.2015.05.010

    Article  CAS  Google Scholar 

  48. S. Quraishi, M. Martins, A.A. Barros, P. Gurikov, S.P. Raman, I. Smirnova, A.R.C. Duarte, R.L. Reis, Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J. Supercritic. Fluids. 105, 1–8 (2015). https://doi.org/10.1016/j.supflu.2014.12.026

    Article  CAS  Google Scholar 

  49. G. Santos-López, W. Argüelles-Monal, E. Carvajal-Millan, Y. López-Franco, M. Recillas-Mota, J. Lizardi-Mendoza, Aerogels from chitosan solutions in ionic liquids. Polymers. 9, 722 (2017). https://doi.org/10.3390/polym9120722

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the FONDECYT-Chile for their financial support of this investigation, Project No. 1170681. The authors are grateful to the FONDEQUIP, Project No. EQM150139. The authors are grateful to the contribution of the Scientific Equipment Unit – MAINI, Catholic University of the North, Chile; for the assessment of the sample preparation, analysis and data generated through the CONICYT Equipment Program FONDEQUIP XPS EQM140044, 2014-2016.

Author information

Authors and Affiliations

Authors

Contributions

Sebastián Guajardo: Conceptualization, Methodology, Formal analysis, Investigation, Writing – Original draft preparation, Visualization. Katherina Fernández: Conceptualization, Methodology, Validation, Supervision, Writing – Review & editing, Project administration. Toribio Figueroa: Investigation, Visualization. Jessica Borges: Investigation, Visualization. Manuel Meléndrez: Visualization, Writing- Reviewing and Editing.

Corresponding author

Correspondence to Katherina Fernández.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guajardo, S., Figueroa, T., Borges, J. et al. Comparative Study of Graphene Oxide-Gelatin Aerogel Synthesis: Chemical Characterization, Morphologies and Functional Properties. J Inorg Organomet Polym 31, 1517–1526 (2021). https://doi.org/10.1007/s10904-020-01770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01770-9

Keywords

Navigation