Skip to main content

Advertisement

Log in

Control of fracture networks on a coastal karstic aquifer: a case study from northeastern Yucatán Peninsula (Mexico)

Contrôle des réseaux de fractures sur un aquifère karstique côtier: une étude de cas du nord-est de la péninsule du Yucatán (Mexique)

Control de redes de fracturas en un acuífero kárstico costero: caso de estudio del noreste de la península de Yucatán

沿海岩溶含水层裂隙网络的控制作用:以墨西哥Yucatán半岛东北部为例

Controle das redes de fraturas em um aquífero cárstico costeiro: estudo de caso no nordeste da Península de Yucatán (México)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Yucatán Peninsula karst aquifer in southeastern Mexico is important because it is the only source of freshwater supply in the region. Along the eastern coast, the aquifer behaves as a shallow unconfined aquifer, and one of its main characteristics is the development of a complex network of karstic conduits. Electrical resistivity tomography (ERT) is a geophysical technique that provides reliable information on aquifer properties that can be applied to karst. With this in mind, ERT surveys (with dipole-dipole and Wenner arrays) together with vertical profiles of groundwater electrical conductivity were obtained in the northeast of Yucatán Peninsula in the Akumal zone. The objective was to evaluate the characteristic structure of the unsaturated and saturated areas, and to determine the importance of factors at a local level that affect the thickness of the freshwater lens, as well as groundwater flow directions near the coast. The results of the ERT sections show a thin vadose zone with resistivity values greater than 1,052 Ωm and a saturated zone with resistivity values that vary from 1 to 1,052 Ωm, and show the presence of dissolution conduits and fracture zones that are affecting the freshwater lens of the aquifer. In addition, water-table measurements show the role of fracture networks in the groundwater flow. The overall results indicate conditions for a possible microbasin in the Akumal zone, highlighting the importance of local fractures, which could work as groundwater divides along the eastern coast of the Yucatán Peninsula.

Résumé

L’aquifère karstique de la péninsule du Yucatán dans le sud-est du Mexique est important car c’est la seule source d’approvisionnement en eau douce de la région. Le long de la côte Est, l’aquifère se comporte comme un aquifère libre peu profond, et l’une de ses principales caractéristiques est le développement d’un réseau complexe de conduits karstiques. La tomographie de résistivité électrique (ERT) est une technique géophysique qui fournit des informations fiables sur les propriétés de l’aquifère pouvant être appliquées au karst. Dans cette optique, des levés ERT (avec des tableaux dipôle-dipôle et Wenner) ainsi que des profils verticaux de conductivité électrique des eaux souterraines ont été obtenus dans le nord-est de la péninsule du Yucatán dans la zone d’Akumal. L’objectif était d’évaluer la structure caractéristique des zones non saturée et saturée, et de déterminer l’importance des facteurs au niveau local qui affectent l’épaisseur de la lentille d’eau douce, ainsi que les directions d’écoulement des eaux souterraines près de la côte. Les résultats des coupes ERT montrent une zone vadose peu épaisse avec des valeurs de résistivité supérieures à 1,052 Ωm et une zone saturée avec des valeurs de résistivité variant de 1 à 1,052 Ωm, et ceci montrent la présence de conduits de dissolution et de zones de fracture qui affectent la lentille d’eau douce de l’aquifère. De plus, les mesures de la nappe phréatique montrent le rôle des réseaux de fractures dans l’écoulement des eaux souterraines. L’ensemble des résultats indique que les conditions favorables à un éventuel micro-bassin dans la zone d’Akumal, soulignant l’importance des fractures locales, qui pourraient fonctionner comme des zones de répartition des eaux souterraines le long de la côte est de la péninsule du Yucatán.

Resumen

La importancia del acuífero kárstico de la Península de Yucatán en el sureste de México se debe a que es la única fuente de suministro de agua dulce en la región. A lo largo de la costa oriental, el acuífero se comporta como un acuífero poco profundo, y una de sus principales características es el desarrollo de una compleja red de conductos kársticos. La Tomografía de Resistividad Eléctrica (ERT) es una técnica geofísica que proporciona información confiable sobre las propiedades del acuífero que se pueden aplicar al kárst. Con esto en mente, se realizaron tomografias ERT (con arreglos dipolo-dipolo y Wenner) junto con perfiles verticales de conductividad eléctrica de aguas subterráneas en el noreste de la península de Yucatán en la zona de Akumal. El objetivo fue evaluar la estructura característica de las áreas insaturadas y saturadas, y determinar la importancia de los factores a nivel local que afectan el grosor de la lente de agua dulce, así como las direcciones de flujo de aguas subterráneas cerca de la costa. Los resultados de las secciones ERT muestran una zona de vadosa delgada con valores de resistividad superiores a 1,052 Ωm y una zona saturada con valores de resistividad que varían de 1 a 1,052 Ωm, y muestran la presencia de conductos de disolución y zonas de fractura que están afectando a la lente de agua dulce del acuífero. Además, las mediciones de la tabla de agua muestran el papel de las redes de fracturas en el flujo del agua subterránea. Los resultados generales indican las condiciones para una posible microcuenca en la zona de Akumal, destacando la importancia de las fracturas locales, que podrían actuar como un parte aguas del agua subterránea dividiéndola a lo largo de la costa oriental de la península de Yucatán.

摘要

墨西哥东南部Yucatán半岛岩溶含水层是该地区唯一的淡水水源,因此非常重要。沿东海岸的含水层为浅层潜水含水层,其主要特征之一是发育了复杂的岩溶管道网络。电阻层析成像(ERT)是可以提供有关岩溶含水层特性的可靠信息的地球物理技术。考虑到这一点,在Yucatán半岛东北部的Akumal地区获得了ERT调查(使用偶极-偶极子和Wenner阵列)以及地下水电导率的垂直剖面。目的是评估非饱和和饱和区域的特征结构,并确定影响淡水透镜体厚度以及沿海附近地下水流动方向的局部因素的重要性。 ERT区段的结果显示薄的非饱和区的电阻率值大于1,052Ωm,饱和区的电阻率值在1至1,052Ωm之间,而且存在影响淡水透镜体的溶解管道和裂缝。此外,地下水位测量显示了裂隙网络在地下水流中的作用。总体结果表明,在Akumal地区可能存在微平原的条件,这更加表明了局部裂隙的重要性,其可作为沿Yucatán半岛东海岸的地下水分水岭。

Resumo

A importância do aquífero cársico da Península de Yucatán, situada no sudeste do México está em que é a única fonte de abastecimento de água doce na região. Ao longo da costa leste, o aquífero se comporta como um aquífero raso não confinado, e uma de suas principais características é o desenvolvimento de uma complexa rede de condutos cársticos. A tomografia por resistividade elétrica (TRE) é uma técnica geofísica que fornece informações confiáveis sobre as propriedades do aquífero que podem ser aplicadas ao carste. Com isso em mente, levantamentos TRE (com arranjos dipolo-dipolo e Wenner) juntamente com perfis verticais de condutividade elétrica da água subterrânea foram obtidos no nordeste da Península de Yucatán na zona de Akumal. O objetivo foi avaliar a estrutura característica das áreas saturadas e insaturadas e determinar, em nível local, a importância dos fatores que afetam a espessura da lente de água doce, bem como as direções de fluxo da água subterrânea perto do litoral. Os resultados das seções TRE mostram uma zona vadosa fina com valores de resistividade maiores que 1,052 Ωm e uma zona saturada com valores de resistividade que variam de 1 a 1,052 Ωm. Mostram também a presença de condutos de dissolução e zonas de fratura que estão afetando as lentes de água doce de o aquífero. Adicionalmente, as medições de níveis de água mostram o papel das redes de fraturas no fluxo de água subterrânea. Os resultados indicam condições para a existência de uma microbacia na zona de Akumal, e se destaca a importância das fraturas locais, que poderiam funcionar como divisores de água subterrânea ao longo da costa leste da Península de Yucatán.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Advanced Geosciences Inc (2005) Instruction manual for Earth-Imager 2D. Resistivity and IP inversion software. Advanced Geosciences, Austin, TX

    Google Scholar 

  • Advanced Geosciences Inc (2011) Instruction manual for SuperSting earth resistivity, IP & SP system PowerSting external high power transmitters. Advanced Geoscience, Austin

  • Akumal PPDU (2007) Programa de Desarrollo Urbano Del Centro de Población Akumal 2007–2032 [Urban Development Program of Akumal Village 2007–2032]. Gobierno Municipal de Solidaridad, Quintana Roo, Mexico

  • Andrade–Gómez L, Rebolledo-Vieyra M, Andrade JL, López PZ, Estrada-Contreras J (2019) Karstic aquifer structure from geoelectrical modeling in the ring of sinkholes, Mexico. Hydrogeol J. https://doi.org/10.1007/s10040-019-02016-w

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J. https://doi.org/10.1007/s10040-004-0402-9

    Article  Google Scholar 

  • Bauer-Gottwein P, Gondwe BRN, Charvet G, Marín LE, Rebolledo-Vieyra M, Merediz-Alonso G (2011) Review: The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol J 19(3):507–524. https://doi.org/10.1007/s10040-010-0699-5

    Article  Google Scholar 

  • Beddows PA (2003) Cave hydrology of the Carribbean Yucatan coast. Association of Mexican Cave Studies Bulletin 1. AMCS, Austin, TX, 96 pp

  • Beddows PA (2004) Groundwater hydrology of a coastal conduit carbonate aquifer: Caribbean coast of the Yucatán Peninsula, México. University of Bristol, Bristol, UK

  • Beddows PA, Smart PL, Whitaker FF, Smith SL (2007) Decoupled fresh-saline groundwater circulation of a coastal carbonate aquifer: spatial patterns of temperature and specific electrical conductivity. J Hydrol 346(1–2):18–32. https://doi.org/10.1016/j.jhydrol.2007.08.013

    Article  Google Scholar 

  • Bonet F, Butterlin J (1962) Stratigraphy of the northern part of the Yucatan Peninsula in Yucatan field trip guidebook. New Orleans Geological Society, New Orleans, LA, pp 52–57

    Google Scholar 

  • Canul-Macario C, Salles P, Hernández-Espriú A, Pacheco-Castro R (2020) Empirical relationships of groundwater head–salinity response to variations of sea level and vertical recharge in coastal confined karst aquifers. Hydrogeol J. https://doi.org/10.1007/s10040-020-02151-9

  • Collins SV, Reinhardt EG, Rissolo D, Chatters JC, Nava Blank A, Luna Erreguerena P (2015) Reconstructing water level in Hoyo Negro, Quintana Roo, Mexico: implications for early Paleoamerican and faunal access. Quat Sci Rev 124:68–83. https://doi.org/10.1016/j.quascirev.2015.06.024

    Article  Google Scholar 

  • CONAGUA (2002) Determinación de la Disponibilidad Del Agua en el Acuífero de la Península de Yucatán [Determination of the water availability at the Yucatan Peninsula Aquifer]. Secretaria de Medio Ambiente y Recursos Naturales, Mexico City, 20 pp

  • CONAGUA (2014) Reporte del clima en México [Weather report in Mexico]. Secretaria de Medio Ambiente y Recursos Naturales, Mexico City, 27 pp

  • Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52(3):289. https://doi.org/10.1190/1.1442303

    Article  Google Scholar 

  • Coutino A, Stastna M, Kovacs S, Reinhardt E (2017) Hurricanes Ingrid and Manuel (2013) and their impact on the salinity of the meteoric water mass, Quintana Roo, Mexico. J Hydrol 551:715–729. https://doi.org/10.1016/j.jhydrol.2017.04.022

    Article  Google Scholar 

  • de Franco R, Biella G, Tosi L, Teatini P, Lozej A, Chiozzotto B, Giada M et al (2009) Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: the Chioggia test site (Venice Lagoon, Italy). J Appl Geophys 69(3):117–130. https://doi.org/10.1016/j.jappgeo.2009.08.004

    Article  Google Scholar 

  • Doro KO, Leven C, Cirpka OA (2013) Delineating subsurface heterogeneity at a loop of River Steinlach using geophysical and hydrogeological methods. Environ Earth Sci 69:335–348. https://doi.org/10.1007/s12665-013-2316-0

    Article  Google Scholar 

  • Escolero O, Marín LE, Steinich B, Pacheco JA, Anzaldo JM (2005) Geochemistry of the hydrogeological reserve of Mérida, Yucatán, Mexico. Geofis Int 44(3):301–314

    Google Scholar 

  • Ford DC, Williams PC (2007) Karst geomorphology and hydrology. Chapman and Hall, New York

    Book  Google Scholar 

  • Galazoulas EC, Mertzanides YC, Petalas CP, Kargiotis EK (2015) Large scale electrical resistivity tomography survey correlated to hydrogeological data for mapping groundwater salinization: a case study from a multilayered coastal aquifer in Rhodope, northeastern Greece. Environ Proc 2(1):19–35. https://doi.org/10.1007/s40710-015-0061-y

    Article  Google Scholar 

  • García-Menéndez O, Ballesteros BJ, Renau-Pruñonosa A, Morell I (2018) Using electrical resistivity tomography to assess the effectiveness of managed aquifer recharge in a salinized coastal aquifer. Environ Monit Asses 190:19

    Article  Google Scholar 

  • Goebel M, Pidlisecky A, Knight R (2017) Resistivity imaging reveals complex pattern of saltwater intrusion along Monterey coast. J Hydrol 551:746–755. https://doi.org/10.1016/j.jhydrol.2017.02.037

    Article  Google Scholar 

  • Gómez-Nicolás M, Rebolledo-Vieyra M, Canto-Lugo E, Huerta-Quintanilla R, Ochoa-Sandoval P (2017) Connectivity in a karst system using electrical resistivity tomography and network theory. Groundwater 56(5):732–741. https://doi.org/10.1111/gwat.12618

    Article  Google Scholar 

  • Gondwe BRN, Rahbek ML (2007) Modeling the groundwater catchment of the Sian Ka’an reserve, Quintana Roo. Association for Mexican Cave Studies, Austin, TX

  • Gondwe BRN, Lerer S, Stisen S, Marín L, Rebolledo-Vieyra M, Merediz-Alonso G, Bauer-Gottwein P (2010a) Hydrogeology of the south-eastern Yucatan Peninsula: new insights from water level measurements, geochemistry, geophysics and remote sensing. J Hydrol 389(1–2):1–17. https://doi.org/10.1016/j.jhydrol.2010.04.044

    Article  Google Scholar 

  • Gondwe BRN, Hong S-H, Wdowinski S, Bauer-Gottwein P (2010b) Hydrologic dynamics of the ground-water-dependent Sian Ka’an wetlands, Mexico, derived from InSAR and SAR data. Wetlands 30(1):1–13. https://doi.org/10.1007/s13157-009-0016-z

    Article  Google Scholar 

  • Gondwe BRN, Merediz-Alonso G, Bauer-Gottwein P (2011) The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst. J Hydrol 400(1–2):24–40. https://doi.org/10.1016/j.jhydrol.2011.01.023

    Article  Google Scholar 

  • Gondwe BRN, Ottowitz D, Supper R, Motschka K, Merediz-Alonso G, Bauer-Gottwein P (2012) Regional-scale airborne electromagnetic surveying of the Yucatan karst aquifer (Mexico): geological and hydrogeological interpretation. Hydrogeol J 20:1407–1425. https://doi.org/10.1007/s10040-012-0877-8

    Article  Google Scholar 

  • Greggio N, Giambastiani B, Balugani E, Amaini C, Antonellini M (2018) High-resolution electrical resistivity tomography (ERT) to characterize the spatial extension of freshwater lenses in a salinized coastal aquifer. Water 10. https://doi.org/10.3390/w10081067

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 1:218–242. https://doi.org/10.1002/2013RG000443.Received

    Article  Google Scholar 

  • Hernández-Terrones LM, Null KA, Ortega-Camacho D, Payton A (2015) Water quality assessment in the Mexican Caribbean: impacts on the coastal ecosystem. Cont Shelf Res 102:62–72. https://doi.org/10.1016/j.csr.2015.04.015

    Article  Google Scholar 

  • Instituto Nacional de Estadística y Geografía (2010) Número de habitantes, Quintana Roo [Number of habitants, Quintana Roo State]. http://cuentame.inegi.org.mx/monografias/informacion/qroo/poblacion/. Accessed 20 October 2018

  • Isphording WC (1974) Weathering of Yucatan limestones: the genesis of Terra Rosas. In: Weidie AE (ed) Yucatan guidebook: New Orleans. New Orleans Geological Society, New Orleans LA, pp 78–93

    Google Scholar 

  • Kambesis PN, Coke IV JG (2013) Overview of the controls on eogenetic cave and karst development in Quintana Roo, Mexico. In: Lace M, Mylroide J (eds) Coastal karst landforms. Coastal research library, vol 5. Springer, Dordrecht, The Netherlands, pp 347–373. https://doi.org/10.1007/978-94-007-5016-6

  • Ketabchi H, Mahmoodzadeh D, Ataie-Ashtiani B, Simmons CT (2016) Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration. J Hydrol 535:235–255. https://doi.org/10.1016/j.jhydrol.2016.01.083

    Article  Google Scholar 

  • Kovacs SE, Reinhardt EG, Chatters JC, Rissolo D, Schwarcz HP, Collins SV, Kim S-T, Nava Blank A, Luna Erreguerena P (2017a) Calcite raft geochemistry as a hydrological proxy for Holocene aquifer conditions in Hoyo Negro and Ich Balam (Sac Actun cave system), Quintana Roo, Mexico. Quat Sci Rev 175:97–111. https://doi.org/10.1016/j.quascirev.2017.09.006

    Article  Google Scholar 

  • Kovacs SE, Reinhardt EG, Stastna M, Coutino A, Werner C, Collins SV, Devos F, Le Maillot C (2017b) Hurricane Ingrid and Tropical Storm Hanna’s effects on the salinity of the coastal aquifer, Quintana Roo, Mexico. J Hydrol 551:703–714. https://doi.org/10.1016/j.jhydrol.2017.02.024

    Article  Google Scholar 

  • Kranjc A (2013) 6.10 Classification of closed depressions in carbonate karst. In: Shroder JF (ed) Treatise on geomorphology. Academic, San Diego, pp 104–111. https://doi.org/10.1016/B978-0-12-374739-6.00125-1

  • Lauderdale RW, Ward WC, Weidie AE (1979) Carrillo Puerto Formation of northeastern Quintana Roo, Mexico. Gulf Coast Assoc Geol Soc Trans 29:275–280

    Google Scholar 

  • Leal-Bautista R, Lenczewski M, Morgan C, Gahala A, Mclain J (2013) Assessing fecal contamination in groundwater from the Tulum region, Quintana Roo, Mexico J Environ Prot 4. https://doi.org/10.4236/jep.2013.411148

  • Levanon E, Yechieli Y, Gvirtzman H, Shalev E (2017) Tide-induced fluctuations of salinity and groundwater level in unconfined aquifers: field measurements and numerical model. J Hydrol 551:665–675. https://doi.org/10.1016/j.jhydrol.2016.12.045

    Article  Google Scholar 

  • López-Ramos E (1975) Geological summary of the Yucatan peninsula. In: Nairn AEM, Stehli FG (eds) The ocean basins and margins, vol 3: the Gulf of Mexico and the Caribbean. Plenum, New York, 26 pp

    Google Scholar 

  • Marín LE, Steinich B, Pacheco J, Escolero OA (2000) Hydrogeology of a contaminated sole-source karst aquifer. Geofísica Internacional Universidad Nacional Autónoma de México Universidad Nacional Autónoma de México, Mérida, Yucatán. Geofis Int 39(1):359–365

    Google Scholar 

  • Marín LE, Perry EC, Essaid HI, Steinch B (2004) Hydrogeological investigations and numerical simulation of groundwater flow in the karstic aquifer of northwestern Yucatan, México. In: Cheng A, Ouazar D (eds) Coastal aquifer management-monitoring, modeling, and case studies. CRC, Boca Raton, FL, pp 257–258

  • Marino MA (1974) Rise and decline of the water table induced by vertical recharge. J Hydrol 23(3):289–298. https://doi.org/10.1016/0022-1694(74)90009-2

    Article  Google Scholar 

  • Masciopinto C, Liso I, Caputo MC, De Carlo L (2017) An integrated approach based on numerical modelling and geophysical survey to map groundwater salinity in fractured coastal aquifers. Water 9(11):875. https://doi.org/10.3390/w9110875

    Article  Google Scholar 

  • Medici G, West LJ, Chapman PJ, Banwart SA (2019) Prediction of contaminant transport in fractured carbonate aquifer types: a case study of the Permian Magnesian limestone group (NE England, UK). Environ Sci Pollut Res 26(24):24863–24884. https://doi.org/10.1007/s11356-019-05525-z

    Article  Google Scholar 

  • Minsley BJ, Ajo-Franklin J, Mukhopadhyay A, Morgan FD (2011) Hydrogeophysical methods for analyzing aquifer storage and recovery systems. Groundwater 49(2):250–269. https://doi.org/10.1111/j.1745-6584.2010.00676.x

    Article  Google Scholar 

  • Moore YH, Stoessell RK, Easley DH (1992) Fresh-water/sea-water relationship within a ground- water flow system, northeastern coast of the Yucatan Peninsula. Ground Water 3(3):343–350

    Article  Google Scholar 

  • Null KA, Knee KL, Crook ED, de Sieyes NR, Rebolledo-Vieyra M, Hernández-Terrones L, Paytan A (2014) Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula. Cont Shelf Res 77(7):38–50. https://doi.org/10.1016/j.csr.2014.01.011

    Article  Google Scholar 

  • Ochoa-Tinajero, Luis E (2016) Inversión e Interpretación 2D y 3D de Datos de Resistividad Eléctrica En El Cenote Chac-Mool, Quintana Roo [Inversion and interpretation of 2D and 3D electrical resistivity data in the Cenote Chac-Mool, Quintana Roo]. Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California

  • Perry E, Marin L, McClain J, Velazquez G (1995) Ring of Cenotes (sinkholes), Northwest Yucatan, Mexico: its hydrogeologic characteristics and possible association with the Chicxulub Impact Crater. Geology 23(1):17–20. https://doi.org/10.1130/0091-7613(1995)023<0017:ROCSNY>2.3.CO;2

    Article  Google Scholar 

  • Perry E, Velazquez-Oliman G, Marin L (2002) The hydrogeochemistry of the karst aquifer system of the Northern Yucatan Peninsula, Mexico. Int Geol 44(2):191–221. https://doi.org/10.2747/0020-6814.44.3.191

    Article  Google Scholar 

  • Plank Z, Polg D (2019) Application of the DC resistivity method in urban geological problems of karstic areas. Near Surf Geophys 17:547–561. https://doi.org/10.1002/nsg.12062

    Article  Google Scholar 

  • QRSS (2013) Quintana Roo Speleological Survey. www.caves.org/project/qrss.htm. Accessed 20 October 2018

  • Rebolledo-Vleyra M, Urrutia-Fucugauchi J, Marin LE, Trejo-Garcia A, Sharpton VL, Soler-Arechalde AM, (2010) UNAM Scientific Shallow-Drilling Program of the Chicxulub Impact Crater. International Geology Review 42 (10):928–940.https://doi.org/10.1080/00206810009465118

  • Rebolledo-Vieyra M, Marin LE, Sharpton VL, Trejo-Garcia A (2011) The Chicxulub impact crater and its influence on the regional hydrology in northwestern Yucatan, Mexico. In: Buster NA, Norris R (eds) Gulf of Mexico origin, waters, and biota, vol 3. Texas A&M University Press, College Station, TX, pp 279–290

    Google Scholar 

  • Redhaounia B, Aktarakçi H, Ountsche B, Gabtni H, Sami K, Bédir M (2015) Hydro-geophysical interpretation of fractured and karstified limestones reservoirs: a case study from Amdoun region (NW Tunisia) using electrical resistivity tomography, digital elevation model (DEM) and hydro-geochemical approaches. J Afr Earth Sci 112:328–338. https://doi.org/10.1016/j.jafrearsci.2015.09.020

    Article  Google Scholar 

  • Redhaounia B, Ilondo BO, Gabtni H, Sami K, Bédir M (2016) Electrical resistivity tomography (ERT) applied to karst carbonate aquifers: case study from Amdoun, northwestern Tunisia. Pure Appl Geophys 173(4):1289–1303. https://doi.org/10.1007/s00024-015-1173-z

    Article  Google Scholar 

  • Richards D, Richards S (2007) Overview of the geology and hydrology of coastal Quintana ROO, Mexico. AMCS Activ Newslett 30:104–109

    Google Scholar 

  • Saint-Loup R, Felix T, Maqueda A, Schiller A, Renard P (2018) A survey of groundwater quality in Tulum region, Yucatan Peninsula, Mexico. Environ Earth Sci 77. https://doi.org/10.1007/s12665-018-7747-1

  • Schiller A, Supper R, Schattauer I, KMotschka K, Merediz Alonso G, Lopéz Tamayo A (2017) Advanced airborne electromagnetics for capturing hydrogeological parameters over the coastal karst system of Tulum, Mexico. EuroKarst 2016. https://doi.org/10.1007/978-3-319-45465-8

  • Schönian F, Tagle R, Stöffler D, aKenkmann T (200) Geology of southern Quintana Roo (Mexico) and the Chicxulub ejecta blanket. 36th Lunar and Planetary Science Conference 2389. http://www.liber-lapidum.net/frank/frank.html. Accessed September 2020

  • Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327(5970):1214–1218. https://doi.org/10.1126/science.1177265

  • SGM (2006) Carta Geológico-minera cozumel F16-11 Quintana Roo [Geological-mineral map F16-11: Cozumel Quintana Roo Mexico]. SGM, Mexico City

  • Sharma S, Verma GK (2015) Inversion of electrical resistivity data: a review. Int J Environ Ecol Geol Geophys Eng 9(4):400–406

    Google Scholar 

  • Smart P, Beddows P, Smith S, Whitaker F (2006) Cave development on the Caribbean Coast of the Yucatan Peninsula, Quintana Roo, Mexico. Geological Soc Am Spec Pap 404. https://doi.org/10.1130/2006.2404(10)

  • Steinich B, Guadalupe VO, Marín LE, Perry E (1996) Determination of the ground water divide in the karst aquifer of Yucatán, Mexico, combining geochemical and hydrogeological data. Geofis Int 35(2):153–159

    Google Scholar 

  • Stummer P, Maurer H, Green AG (2004) Experimental design: electrical resistivity data sets that provide optimum subsurface information. Geophysics 69(1):120–139. https://doi.org/10.1190/1.1649381

    Article  Google Scholar 

  • Supper R, Motschka K, Ahl A, Bauer-Gottwein P, Gondwe B, Alonso GM, Römer A, Ottowitz D, Kinzelbach W (2009) Spatial mapping of submerged cave systems by means of airborne electromagnetics: an emerging technology to support protection of endangered karst aquifers. Near Surf Geophys 7(7):613–627. https://doi.org/10.3997/1873-0604.2009008

    Article  Google Scholar 

  • Tassy A, Maxwell M, Borgomano J, Arfib B, Fournier F, Gilli E, Guglielmi Y (2014) Electrical resistivity tomography (ERT) of a coastal carbonate aquifer (Port-Miou, SE France). Environ Earth Sci 71(2):601–608. https://doi.org/10.1007/s12665-013-2802-4

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, New York. https://doi.org/10.1017/CBO9781139167932

  • Tulaczyk S M, Perry EC, Duller CE, Villasuso M (1993) Influence of the Holbox fracture zone on the karst geomorphology and hydrogeology of northern Quintana Roo, Yucatan Peninsula, Mexico. In: Proc 4th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Panama City, Florida, 25–27 January 1993. Balkema, Rotterdam, The Netherlands, pp 181–188. https://doi.org/10.1016/0148-9062(94)92835-5

  • Vera I, Mariño-Tapia I, Enriquez C (2012) Effects of drought and subtidal sea-level variability on salt intrusion in a coastal karst aquifer. Mar Freshw Res 63(6):485–493. https://doi.org/10.1071/MF11270

    Article  Google Scholar 

  • Wachniew P, Zurek AJ, Stumpp C, Gemitzi A, Gargini A, Filippini M, Rozanski K, Meeks J, Kværner J, Witczak S (2016) Toward operational methods for the assessment of intrinsic groundwater vulnerability: a review. Crit Rev Environ Sci Technol 46(9):827–884. https://doi.org/10.1080/10643389.2016.1160816

    Article  Google Scholar 

  • Weidie AE (1978) Lineaments of the Yucatán Peninsula and fractures of the central Quintana Roo coast. In: Field trip no. 10-Yucatan, road log and supplement to 1978 Guidebook, 1982 GSA Annual Meeting, New Orleans, LA, pp 21−25

  • Weidie AE (1985) Part I: geology of Yucatan platform. In: Geology and hydrogeology of the Yucatan and Quaternary geology of northeastern Yucatan Peninsula, pp 1–19. http://archives.datapages.com/data/nogs/data/006/006007/0001.htm

  • Zhou W, Beck BF, Stephenson JB (2000) Reliability of dipole-dipole electrical resistivity tomography for defining depth to bedrock in covered karst terranes. Environ Geol 39(7):760–766. https://doi.org/10.1007/s002540050491

    Article  Google Scholar 

  • Zhu J, Currens JC, Dinger JS (2011) Challenges of using electrical resistivity method to locate karst conduits: a field case in the Inner Bluegrass Region, Kentucky. J Appl Geophys 75(3):523–530. https://doi.org/10.1016/j.jappgeo.2011.08.009

    Article  Google Scholar 

Download references

Acknowledgments

The authors of this work acknowledge the contribution of Dr. Gilberto Acosta, M.C. Alejandro Carmona, Ing. Sarahi Del Angel Delgado, and Ing. Irving Escobedo Cen for the fieldwork. All authors appreciate the corrections made by the editor, associate editor, and reviewers to improve the original manuscript.

Funding

J. C. Zamora-Luria thanks CONACyT for its financial support through the master grant No. 462886. J. A. Perera-Burgos and A. González-Calderón acknowledge the support provided by CONACYT: Cátedras CONACYT para jóvenes investigadores.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Ma. Leal-Bautista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamora-Luria, J.C., Perera-Burgos, J.A., González-Calderón, A. et al. Control of fracture networks on a coastal karstic aquifer: a case study from northeastern Yucatán Peninsula (Mexico). Hydrogeol J 28, 2765–2777 (2020). https://doi.org/10.1007/s10040-020-02237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02237-4

Keywords

Navigation