Skip to main content
Log in

Hydrodynamics analysis of Taylor flow in oil and gas pipelines under constant heat flux

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This is an incompressible numerical study of the hydrodynamics and heat transfer characteristics of Taylor flow in vertical oil and gas pipelines under constant heat flux using the Volume-of-fluid (VOF) method in ANSYS Fluent, covering a wide range of Re(0.22 ≤ Re ≤ 800) and Ca(0.0075 ≤ Ca ≤ 0.35). Nusselt number (Nu) correlations were used to examine the heat transfer characteristics based on a set of flow parameters. A comparison of the predictions of the void fraction, average velocity, pressure drop and the mean Nusselt number was made with available experimental observations, with most of the experimental data falling within 15.540% of the current study. The bubble increases in length with increasing capillary number and the wall of the tube at the confines of the gas phase leads to asymmetric and axisymmetric bubbles at low and high capillary numbers respectively. The transition region between the edge of the bubble and the film thickness increases with an equivalent increase in Ca and more evident at high Re. The study revealed that, Taylor flow plays a more significant role on the pressure drop increase and, provided the mechanisms and theoretical guidance for heat transfer characteristics in oil and gas pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

a:

constant

c p :

specific heat capacity, Jkg−1K−1

Ca :

Capillary number, μLUTP/σ

D :

diameter of the column, m

Eo:

Eotvos number, g(ρL − ρG)D2/σ

Fr:

Froude number, \( {U}_{TB}/\sqrt{gD\left({\rho}_L-{\rho}_G\right)/{\rho}_L} \)

g :

acceleration due to gravity, m/s2

G :

gas phase

k :

Thermal conductivity, Wm−1K−1

k :

the kth phase fluid

κ :

Interface curvature

L :

liquid phase

L s :

liquid slug length

Luc :

unit cell length, m

M:

Morton number

MRF:

Moving Frame of Reference

Nu:

Nusselt number, hD/k

Nuav :

mean Nusselt number

Nux :

local Nusselt number

Nu*:

normalized Nusselt number, NuTP/NuLO

Nu LO :

fully developed liquid-only Nusselt number for constant heat flux conditions.

Nu TP :

two-phase Nusselt number,hTP/kL

q :

heat flux, Wm−2

q av :

average heat flux,Wm−2

R :

bubble radius, m

ReTP :

two-phase (liquid only Reynolds number), UTPρLd/μL

Re:

Reynolds number

H:

specific enthalpy, J/kg

T b, av :

average bulk Temperature, K

T W, av :

average Temperature, K

U TP :

mixture velocity, m/s

U TB :

Taylor bubble velocity, m/s

U L :

liquid superficial velocity, m/s

U Wall :

velocity of the moving wall, m/s

u x :

axial velocity,m/s

υ :

velocity vector, m/s

ν x :

radial velocity, m/s

σ :

surface tension, N/m

ρ G :

gas density, kg/m3

ρ L :

liquid density, kg/m3

μ G :

gas viscosity, Pa s

μ L :

liquid viscosity, Pa s

α G :

volume fraction of the gas phase

α L :

volume fraction of the liquid phase

δ F :

liquid film thickness

ε :

void fraction

β :

homogeneous void fraction

av:

average value for a unit cell

b:

bubble

f:

fluid

G:

gas

i:

interface

in:

inlet

L:

liquid

out:

outlet

TB:

Taylor bubble

TP:

two-phase flow

UC:

unit cell

W:

wall

References

  1. Shaban H, Tavoularis S (Oct. 2018) Detached eddy simulations of rising Taylor bubbles. Int J Multiphase Flow 107:289–300

    Article  Google Scholar 

  2. Pinto AMFR, Coelho Pinheiro MN, Nogueira S, Ferreira VD, Campos JBLM (Sep. 2005) Experimental study on the transition in the velocity of individual taylor bubbles in vertical upward co-current liquid flow. Chem Eng Res Des 83(9):1103–1110

    Article  Google Scholar 

  3. Mayor TS, Pinto AMFR, Campos JBLM (Jun. 2007) An image analysis technique for the study of gas–liquid slug flow along vertical pipes — associated uncertainty. Flow Meas Instrum 18(3–4):139–147

    Article  Google Scholar 

  4. Taha T, Cui Z (Dec. 2002) CFD modelling of gas-sparged ultrafiltration in tubular membranes. J Membr Sci 210(1):13–27

    Article  Google Scholar 

  5. van Hout R, Gulitski A, Barnea D, Shemer L (Apr. 2002) Experimental investigation of the velocity field induced by a Taylor bubble rising in stagnant water. Int J Multiphase Flow 28(4):579–596

    Article  MATH  Google Scholar 

  6. Shemer B, Lev D (1986) Visualization of the instantaneous velocity profiles in gas-liquid slug flow. PCH. Physicochem. Hydrodyn., no. October

  7. Nogueira S, Sousa RG, Pinto AMFR, Riethmuller ML, Campos JBLM (2003) Simultaneous PIV and pulsed shadow technique in slug flow: A solution for optical problems. Exp Fluids 35(6):598–609

    Article  Google Scholar 

  8. Han Y, Shikazono N (2009) Measurement of the liquid film thickness in micro tube slug flow. Int J Heat Fluid Flow 30(5):842–853

    Article  Google Scholar 

  9. Garcia Pabon J, Khosravi A, Nunes R, Machado L (Aug. 2019) Experimental investigation of pressure drop during two-phase flow of R1234yf in smooth horizontal tubes with internal diameters of 3.2 mm to 8.0 mm. Int J Refrig 104:426–436

    Article  Google Scholar 

  10. Turner SE, Lam LC, Faghri M, Gregory OJ (Oct. 2004) Experimental investigation of gas flow in microchannels. J Heat Transf 126(5):753–763

    Article  Google Scholar 

  11. Taha T, Cui ZF (Jan. 2006) CFD modelling of slug flow in vertical tubes. Chem Eng Sci 61(2):676–687

    Article  Google Scholar 

  12. Taha T, Cui ZF (Mar. 2004) Hydrodynamics of slug flow inside capillaries. Chem Eng Sci 59(6):1181–1190

    Article  Google Scholar 

  13. Asadolahi AN, Gupta R, Fletcher DF, Haynes BS (Nov. 2011) CFD approaches for the simulation of hydrodynamics and heat transfer in Taylor flow. Chem Eng Sci 66(22):5575–5584

    Article  Google Scholar 

  14. Asadolahi AN, Gupta R, Leung SSY, Fletcher DF, Haynes BS (Feb. 2012) Validation of a CFD model of Taylor flow hydrodynamics and heat transfer. Chem Eng Sci 69(1):541–552

    Article  Google Scholar 

  15. Nogueira S, Riethmuller ML, Campos JBLM, Pinto AMFR (Nov. 2006) Flow patterns in the wake of a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids: An experimental study. Chem Eng Sci 61(22):7199–7212

    Article  Google Scholar 

  16. Dukler AE, Hubbard MG (1975) A model for gas-liquid slug flow in horizontal and near horizontal tubes. Ind Eng Chem Fundam 14(4):337–347

    Article  Google Scholar 

  17. Talimi V, Muzychka YS, Kocabiyik S (Nov. 2012) Numerical simulation of the pressure drop and heat transfer of two phase slug flows in microtubes using moving frame of reference technique. Int J Heat Mass Transf 55(23–24):6463–6472

    Article  Google Scholar 

  18. Li Y, Hosseini M, Arasteh H, Toghraie D, Rostami S (Apr. 2020) Transition simulation of two-phase intermittent slug flow characteristics in oil and gas pipelines. Int Commun Heat Mass Transf 113:104534

    Article  Google Scholar 

  19. Choutapalli I, Vierow K (Oct. 2010) Wall pressure measurements of flooding in vertical countercurrent annular air–water flow. Nucl Eng Des 240(10):3221–3230

    Article  Google Scholar 

  20. Shaban H, Tavoularis S (Dec. 2014) Measurement of gas and liquid flow rates in two-phase pipe flows by the application of machine learning techniques to differential pressure signals. Int J Multiphase Flow 67:106–117

    Article  Google Scholar 

  21. Suo M, Griffith P (Sep. 1964) Two-phase flow in capillary tubes. J Basic Eng 86(3):576–582

    Article  Google Scholar 

  22. Shaban H, Tavoularis S (May 2014) Identification of flow regime in vertical upward air–water pipe flow using differential pressure signals and elastic maps. Int J Multiphase Flow 61:62–72

    Article  Google Scholar 

  23. Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase two component flow in pipes. Chem Eng Prog 45:39–48

    Google Scholar 

  24. Warnier MJF, de Croon MHJM, Rebrov EV, Schouten JC (Jan. 2010) Pressure drop of gas–liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers. Microfluid Nanofluid 8(1):33

    Article  Google Scholar 

  25. Kawahara A, Chung PM-Y, Kawaji M (Sep. 2002) Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. Int J Multiphase Flow 28(9):1411–1435

    Article  MATH  Google Scholar 

  26. Kreutzer MT, van der Eijnden MG, Kapteijn F, Moulijn JA, Heiszwolf JJ (Aug. 2005) The pressure drop experiment to determine slug lengths in multiphase monoliths. Catal Today 105(3–4):667–672

    Article  Google Scholar 

  27. Chen IY (2001) Two-Phase frictional pressure drop correlations for small tubes. AIP Conference Proceedings 552:247–254

    Article  Google Scholar 

  28. Ju Lee H, Yong Lee S (May 2001) Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights. Int J Multiphase Flow 27(5):783–796

    Article  MATH  Google Scholar 

  29. Garimella S, Killion JD, Coleman JW (Mar. 2002) An experimentally validated model for two-phase pressure drop in the intermittent flow regime for circular microchannels. J Fluids Eng 124(1):205–214

    Article  Google Scholar 

  30. Massoud EZ, Xiao Q, El-Gamal HA (2020) Numerical study of an individual Taylor bubble drifting through stagnant liquid in an inclined pipe. Ocean Eng 195(2019):106648

    Article  Google Scholar 

  31. Thulasidas TC, Abraham MA, Cerro RL (Jan. 1995) Bubble-train flow in capillaries of circular and square cross section. Chem Eng Sci 50(2):183–199

    Article  Google Scholar 

  32. Zheng D, He X, Che D (Oct. 2007) CFD simulations of hydrodynamic characteristics in a gas–liquid vertical upward slug flow. Int J Heat Mass Transf 50(21–22):4151–4165

    Article  MATH  Google Scholar 

  33. Bugg JD, Mack K, Rezkallah KS (Mar. 1998) A numerical model of Taylor bubbles rising through stagnant liquids in vertical tubes. Int J Multiphase Flow 24(2):271–281

    Article  MATH  Google Scholar 

  34. Poncet S, Haddadi S, Viazzo S (Feb. 2011) Numerical modeling of fluid flow and heat transfer in a narrow Taylor–Couette–Poiseuille system. Int J Heat Fluid Flow 32(1):128–144

    Article  Google Scholar 

  35. Fénot M, Dorignac E, Giret A, Lalizel G (May 2013) Convective heat transfer in the entry region of an annular channel with slotted rotating inner cylinder. Appl Therm Eng 54(1):345–358

    Article  Google Scholar 

  36. KATAOKA K (1975) Heat-transfer in a Taylor vortex flow. J Chem Eng Japan 8(4):271–276

    Article  Google Scholar 

  37. Ju P, Brooks CS, Ishii M, Liu Y, Hibiki T (Oct. 2015) Film thickness of vertical upward co-current adiabatic flow in pipes. Int J Heat Mass Transf 89:985–995

    Article  Google Scholar 

  38. Sun F, Yao Y, Li X, Yu P, Ding G, Zou M (May 2017) The flow and heat transfer characteristics of superheated steam in offshore wells and analysis of superheated steam performance. Comput Chem Eng 100:80–93

    Article  Google Scholar 

  39. Fénot M, Bertin Y, Dorignac E, Lalizel G (Jul. 2011) A review of heat transfer between concentric rotating cylinders with or without axial flow. Int J Therm Sci 50(7):1138–1155

    Article  Google Scholar 

  40. Leung SSY, Gupta R, Fletcher DF, Haynes BS (Feb. 2012) Effect of flow characteristics on Taylor flow heat transfer. Ind Eng Chem Res 51(4):2010–2020

    Article  Google Scholar 

  41. Masuda H, Shimoyamada M, Ohmura N (Mar. 2019) Heat transfer characteristics of Taylor vortex flow with shear-thinning fluids. Int J Heat Mass Transf 130:274–281

    Article  Google Scholar 

  42. Qin K, Li D, Huang C, Sun Y, Wang J, Luo K (Jan. 2020) Numerical investigation on heat transfer characteristics of Taylor Couette flows operating with CO2. Appl Therm Eng 165:114570

    Article  Google Scholar 

  43. Zhang J, Fletcher DF, Li W (Dec. 2016) Heat transfer and pressure drop characteristics of gas–liquid Taylor flow in mini ducts of square and rectangular cross-sections. Int J Heat Mass Transf 103:45–56

    Article  Google Scholar 

  44. Lakehal D, Larrignon G, Narayanan C (Apr. 2008) Computational heat transfer and two-phase flow topology in miniature tubes. Microfluid Nanofluid 4(4):261–271

    Article  Google Scholar 

  45. Bandara T, Nguyen N-T, Rosengarten G (Apr. 2015) Slug flow heat transfer without phase change in microchannels: A review. Chem Eng Sci 126:283–295

    Article  Google Scholar 

  46. Howard JA, Walsh PA, Walsh EJ (Oct. 2011) Prandtl and capillary effects on heat transfer performance within laminar liquid–gas slug flows. Int J Heat Mass Transf 54(21–22):4752–4761

    Article  Google Scholar 

  47. Talimi V, Muzychka YS, Kocabiyik S (2013) Slug flow heat transfer in square microchannels. Int J Heat Mass Transf 62(1):752–760

    Article  Google Scholar 

  48. Walsh PA, Walsh EJ, Muzychka YS (Jul. 2010) Heat transfer model for gas–liquid slug flows under constant flux. Int J Heat Mass Transf 53(15–16):3193–3201

    Article  Google Scholar 

  49. He Q, Hasegawa Y, Kasagi N (Feb. 2010) Heat transfer modelling of gas–liquid slug flow without phase change in a micro tube. Int J Heat Fluid Flow 31(1):126–136

    Article  Google Scholar 

  50. Kreutzer MT, Kapteijn F, Moulijn JA, Kleijn CR, Heiszwolf JJ (2005) Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AICHE J 51(9):2428–2440

    Article  Google Scholar 

  51. WARNIER M, REBROV E, DECROON M, HESSEL V, SCHOUTEN J (Jan. 2008) Gas hold-up and liquid film thickness in Taylor flow in rectangular microchannels. Chem Eng J 135(SUPPL. 1):S153–S158

    Article  Google Scholar 

  52. Heil M (Sep. 2001) Finite Reynolds number effects in the Bretherton problem. Phys Fluids 13(9):2517–2521

    Article  MathSciNet  MATH  Google Scholar 

  53. Bretherton FP (Mar. 1961) The motion of long bubbles in tubes. J Fluid Mech 10(02):166

    Article  MathSciNet  MATH  Google Scholar 

  54. Hirt C, Nichols B (Jan. 1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225

    Article  MATH  Google Scholar 

  55. Youngs D (1982) Time-dependent multi-material flow with large fluid distortion. Numer Methods Fluid Dynmaics:273

  56. Mao Z-S, Dukler A (Nov. 1990) The motion of Taylor bubbles in vertical tubes. I. A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid. J Comput Phys 91(1):132–160

    Article  MATH  Google Scholar 

  57. Delnoij E, Kuipers JAM, van Swaaij WPM (Nov. 1997) Computational fluid dynamics applied to gas-liquid contactors. Chem Eng Sci 52(21–22):3623–3638

    Article  Google Scholar 

  58. Krishna R, Van Baten JM (Apr. 2001) Scaling up bubble column reactors with the aid of CFD. Chem Eng Res Des 79(3):283–309

    Article  Google Scholar 

  59. Brackbill J, Kothe D, Zemach C (Jun. 1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354

    Article  MathSciNet  MATH  Google Scholar 

  60. Gupta R, Fletcher DF, Haynes BS (2009) On the CFD modelling of Taylor flow in microchannels. Chem Eng Sci 64(12):2941–2950

    Article  Google Scholar 

  61. Nogueira S, Riethmuler ML, Campos JBLM, Pinto AMFR (Jan. 2006) Flow in the nose region and annular film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids. Chem Eng Sci 61(2):845–857

    Article  Google Scholar 

  62. Issa R (Jan. 1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62(1):40–65

    Article  MathSciNet  MATH  Google Scholar 

  63. Leonard BP (Jun. 1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19(1):59–98

    Article  MATH  Google Scholar 

  64. Coffield D, Shepherd D (Feb. 1987) Tutorial guide to Unix sockets for network communications. Comput Commun 10(1):21–29

    Article  Google Scholar 

  65. Guo Z, Fletcher DF, Haynes BS (Aug. 2015) Implementation of a height function method to alleviate spurious currents in CFD modelling of annular flow in microchannels. Appl Math Model 39(16):4665–4686

    Article  MathSciNet  MATH  Google Scholar 

  66. Araújo JDP, Miranda JM, Campos JBLM (Nov. 2013) Simulation of slug flow systems under laminar regime: Hydrodynamics with individual and a pair of consecutive Taylor bubbles. J Pet Sci Eng 111:1–14

    Article  Google Scholar 

  67. Lu X, Prosperetti A (Jan. 2009) A Numerical Study of Taylor Bubbles. Ind Eng Chem Res 48(1):242–252

    Article  Google Scholar 

  68. Goldsmith HL, Mason SG (Sep. 1962) The movement of single large bubbles in closed vertical tubes. J Fluid Mech 14(1):42–58

    Article  MATH  Google Scholar 

  69. Hayashi K, Kurimoto R, Tomiyama A (Apr. 2011) Terminal velocity of a Taylor drop in a vertical pipe. Int J Multiphase Flow 37(3):241–251

    Article  Google Scholar 

  70. Aussillous P, Quéré D (2000) Quick deposition of a fluid on the wall of a tube. Phys Fluids 12(10):2367

    Article  MATH  Google Scholar 

  71. Taylor GI (Mar. 1961) Deposition of a viscous fluid on the wall of a tube. J Fluid Mech 10(02):161

    Article  MATH  Google Scholar 

  72. Ni D, Hong FJ, Cheng P, Chen G (Nov. 2017) Numerical study of liquid-gas and liquid-liquid Taylor flows using a two-phase flow model based on Arbitrary-Lagrangian–Eulerian (ALE) formulation. Int Commun Heat Mass Transf 88:37–47

    Article  Google Scholar 

  73. and J. B. L. M. C. Luis A. M. Rocha, João M. Miranda (May 2017) Wide range simulation study of Taylor bubbles in circular milli and microchannels. Micromachines 8(5): 154

  74. de Ryck A (2002) The effect of weak inertia on the emptying of a tube. Phys Fluids 14(7):2102

    Article  MathSciNet  MATH  Google Scholar 

  75. Shah AL, London RK (1978) Laminar flow forced convection in ducts. Elsevier, New York, New York, USA

    Google Scholar 

  76. Al-lababidi S, Addali A, Yeung H, Mba D, Khan F (Dec. 2009) Gas void fraction measurement in two-phase gas/liquid slug flow using acoustic emission technology. J Vib Acoust 131(6)

  77. Kurimoto R, Nakazawa K, Minagawa H, Yasuda T (Nov. 2017) Prediction models of void fraction and pressure drop for gas-liquid slug flow in microchannels. Exp Thermal Fluid Sci 88:124–133

    Article  Google Scholar 

  78. Guet S, Decarre S, Henriot V, Liné A (Nov. 2006) Void fraction in vertical gas–liquid slug flow: Influence of liquid slug content. Chem Eng Sci 61(22):7336–7350

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the help provided by Qiongyao Qin at the school of Energy and Power Engineering of the Nanjing University of Science and Technology and the Chinese Scholarship Council (CSC No. 2016GXYD13).

Author information

Authors and Affiliations

Authors

Contributions

Sidique Gawusu: Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing - original draft, Writing - review & editing. Xiaobing Zhang: Conceptualization, Resources, Supervision, Project administration, Writing - review & editing.

Corresponding author

Correspondence to Xiaobing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported here.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawusu, S., Zhang, X. Hydrodynamics analysis of Taylor flow in oil and gas pipelines under constant heat flux. Heat Mass Transfer 57, 515–527 (2021). https://doi.org/10.1007/s00231-020-02965-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02965-z

Keywords

Navigation