Skip to main content
Log in

Arithmetic version of Anderson localization via reducibility

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

The arithmetic version of Anderson localization (AL), i.e., AL with explicit arithmetic description on both the localization frequency and the localization phase, was first given by Jitomirskaya (Ann Math 150:1159–1175, 1999) for the almost Mathieu operators (AMO). Later, the result was generalized by Bourgain and Jitomirskaya (Invent Math 148:453–463, 2002) to a class of one dimensional quasi-periodic long-range operators. In this paper, we propose a novel approach based on an arithmetic version of Aubry duality and quantitative reducibility. Our method enables us to prove the same result for the class of quasi-periodic long-range operators in all dimensions, which includes Jitomirskaya (Ann Math 150:1159–1175, 1999) and Bourgain and Jitomirskaya (Invent Math 148:453–463, 2002) as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(\alpha \in {{\mathbb {T}}}^d\) is called Diophantine, denoted by \(\alpha \in \mathrm{DC}_d(\kappa ,\tau )\), if there exist \(\kappa >0\) and \(\tau >d-1\) such that

    figure a

    Let \(\mathrm{DC}_d:=\bigcup _{\kappa >0} \mathrm{DC}_d(\kappa ,\tau )\).

  2. \(\theta \in {{\mathbb {T}}}\) is called Diophantine, denoted by \(\alpha \in \mathrm{DC}_\alpha (\kappa ,\tau )\), if there exist \(\kappa >0\) and \(\tau >d-1\) such that

    figure b

    Let \(\Theta :=\bigcup _{\kappa >0} \mathrm{DC}_\alpha (\kappa ,\tau )\).

  3. See Sect. 2.3 for more details.

  4. The Anderson localization phase given in [BJ02] is a little larger than \(\Theta \), we mention that we can prove Anderson localization for the same phase set with minor modifications of the proof.

  5. See Sect. 2.2 for definition.

  6. We always have \(\ell _E\in {{\mathbb {Z}}}^d\) since \(\bar{B}_E\in C^0({{\mathbb {T}}}^d,SL(2,{{\mathbb {R}}}))\).

  7. If \(\ell _E\ne {\tilde{\ell }}_E\), let \(D_E(x)=B_E(x)MR_{\langle {\tilde{\ell }}_E-\ell _E,x\rangle }M^{-1}=\begin{pmatrix}d_E^{11}(x)&{}d_E^{12}(x)\\ d_E^{21}(x)&{}d_E^{22}(x)\end{pmatrix}\). It is obvious that \(B_E\) and \(D_E\) define the same \(u_E\). So, one only need to prove the lemma for \(D_E\) and \({\tilde{B}}_E\). Thus, without loss of generality, we can assume that \(\deg {B_E}=\deg {\tilde{B}_E}\).

  8. \(T_{-m}\) is a translation defined by \(T_{-m}u(n):=u(n+m)\).

  9. Note that \(k_0\) maybe not unique.

  10. We say u(n) is normalized if \(\sum _n|u(n)|^2=1\).

References

  1. S. Aubry and G. André. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israeli Phys. Soc. 3 (1980), 133–164.

    MathSciNet  MATH  Google Scholar 

  2. A. Avila. Global theory of one-frequency Schrödinger operators. Acta Math. 215 (2015), 1–54.

    Article  MathSciNet  Google Scholar 

  3. A. Avila. Almost reducibility and absolute continuity. preprint. http://w3.impa.br/~avila/ (2704,2711).

  4. A. Avila. KAM, Lyapunov exponent and the spectral dichotomy for one-frequency Schrödinger operators. Preprint.

  5. A. Avila and S. Jitomirskaya. The Ten Martini Problem. Ann. of Math. 170 (2009), 303–342.

    Article  MathSciNet  Google Scholar 

  6. A. Avila and S. Jitomirskaya. Almost localization and almost reducibility. J. Eur. Math. Soc. 12 (2010), 93–131.

    Article  MathSciNet  Google Scholar 

  7. A. Avila, J. You and Q. Zhou. Sharp phase transitions for the almost Mathieu operator. Duke Math. J. 166 (2017), 2697–2718.

    Article  MathSciNet  Google Scholar 

  8. A. Avila, J. You, Q. Zhou. Dry Ten martini problem in the noncritical case. Preprint.

  9. J. Bourgain. Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies, Vol. 158. Princeton University Press, Princeton, NJ (2005).

  10. J. Bourgain. Anderson localization for quasi-periodic lattice Schrödinger operators on \({\mathbb{Z}}^d\), \(d\) arbitrary. Geom. Funct. Anal. 17 (2007), 682–706.

    Article  MathSciNet  Google Scholar 

  11. J. Bourgain and M. Goldstein. On nonperturbative localization with quasi-periodic potential. Ann. of Math. 152 (2000), 835–879.

    Article  MathSciNet  Google Scholar 

  12. J. Bourgain, M. Goldstein and W. Schlag. Anderson localization for Schrödinger operators on \({\mathbb{Z}}^2\) with quasi-periodic potential. Acta Math. 188 (2002), 41–86.

    Article  MathSciNet  Google Scholar 

  13. J. Bourgain and S. Jitomirskaya. Anderson localization for the band model. Geometric aspects of functional analysis. Lecture Notes in Math. 1745 (2000), 67–79.

  14. J. Bourgain and S. Jitomirskaya. Absolutely continuous spectrum for 1D quasi-periodic operators. Invent. Math. 148 (2002), 453–463.

    Article  MathSciNet  Google Scholar 

  15. A. Cai and L. Ge. Reducibility of finitely differentiable quasi-periodic cocycles and its spectral applications. 1712.09041.

  16. A. Cai, C. Chavaudret, J. You and Q. Zhou. Sharp Hölder continuity of the Lyapunov ecponent of finitely differentiable quasi-periodic cocycles. Math. Z. 291 (2019), 931–958.

    Article  MathSciNet  Google Scholar 

  17. V. Chulaevsky and E. Dinaburg. Methods of KAM-Theory for Long-Range Quasi-Periodic Operators on \({\mathbb{Z}}^\mu \). Pure Point Spectrum. Commun. Math. Phys. 153 (1993), 559–577.

    Article  Google Scholar 

  18. E. Dinaburg and Ya. Sinai. The one dimensional Schrödinger equation with a quasi-periodic potential. Funct. Anal. Appl. 9 (1975), 279–289.

    Article  Google Scholar 

  19. L. Eliasson. Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146 (1992), 447–482.

    Article  Google Scholar 

  20. L. Eliasson. Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179 (1997), 153–196.

    Article  MathSciNet  Google Scholar 

  21. J. Fröhlich, T. Spencer and P. Wittwer. Localization for a class of one dimensional quasi-periodic Schrödinger operators. Commun. Math. Phys. 132 (1990), 5–25.

    Article  Google Scholar 

  22. L. Ge, J. You and Q. Zhou. Exponential dynamical localization: Criterion and applications. arXiv:1901.04258.

  23. A. Gordon, S. Jitomirskaya, Y. Last and B. Simon. Duality and singular continuous spectrum in the almost Mathieu equation. Acta Mathematica. 178 (1997), 169–183.

    Article  MathSciNet  Google Scholar 

  24. M. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2. Comment. Math. Helv. (3)58 (1983), 453–502.

    Article  MathSciNet  Google Scholar 

  25. X. Hou and J. You. Almost reducibility and non-perturbative reducibility of quasiperiodic linear systems. Invent. Math. 190 (2012), 209–260.

    Article  MathSciNet  Google Scholar 

  26. S. Jitomirskaya. Almost everything about the almost Mathieu operator, II. In: Proc. of XI Int. Congress of Math. Physics. Int. Press, Somerville, Mass. (1995), pp. 373–382.

  27. S. Jitomirskaya. Metal-Insulator Transition for the almost Mathieu operator. Ann. of Math. 150 (1999), 1159–1175.

    Article  MathSciNet  Google Scholar 

  28. S. Jitomirskaya and I. Kachkovskiy. \(L^2\)-reducibility and localization for quasi-periodic operators. Math. Res. Lett. 23 (2016), 431–444.

    Article  MathSciNet  Google Scholar 

  29. S. Jitormiskya and W. Liu. Universal hierarchical structure of quasi-periodic eigenfuctions. Ann. of Math. (3)187, 721–776 (2018).

  30. S. Jitormiskya and W. Liu. Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase. arXiv:1802.00781.

  31. S. Jitormiskya, W. Liu and Y. Shi. Anderson localization for multi-frequency quasiperiodic operators on \({{\mathbb{Z}}}^d\). arXiv:1908.03805.

  32. R. Johnson and J. Moser. The rotation number for almost periodic potentials. Commun. Math. Phys. 84 (1982), 403–438.

    Article  MathSciNet  Google Scholar 

  33. S. Klein. Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevery-class function. J. Funct. Anal. 218 (2005), 255–292.

    Article  MathSciNet  Google Scholar 

  34. Y. Last. A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants. Comm. Math. Phys. 151 (1993), 183–192.

  35. M. Leguil, J. You, Z. Zhao and Q. Zhou. Asymptotics of spectral gaps of quasi-periodic Schrödinger operators. arXiv:1712.04700.

  36. J. Puig. A non-perturbative Eliasson’s reducibility theorem. Nonlinearity (2)19 (2006), 355–376.

    Article  MathSciNet  Google Scholar 

  37. Y. Sinai. Anderson localization for one-dimensional difference Schrödinger operator with quasi-periodic potential. J. Stat. Phys. 46 (1987), 861–909.

    Article  Google Scholar 

Download references

Acknowledgements

L. Ge was partially supported by NSF DMS-190146. J. You was partially supported by NNSF of China (11871286) and Nankai Zhide Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangong You.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We list some reducibility results for quasi-periodic \(SL(2,{{\mathbb {R}}})\)-cocyle, one can consult [DS75, Eli92, GYZ] for details.

Theorem 5.1

([DS75, GYZ, Eli92, HY12]) Let \(\alpha \in DC_d(\kappa ,\tau )\), \(h>\tilde{h}>0\), \(\tau '>d-1\), \(\tau >d-1\), \(\kappa >0\), \(\gamma >0\), \(R\in SL(2,{{\mathbb {R}}})\). Let \(A\in C_{h}^\omega ({{\mathbb {T}}}^d,SL(2,{{\mathbb {R}}}))\) with \(\rho (\alpha ,A)\in DC_\alpha (\kappa ,\tau )\). Then there exist numerical constant \(C_0\), constant \(D_0=D_0(\kappa ,\tau ,d)\), \(\epsilon =\epsilon (\tau ',\tau ,\kappa ,\gamma ,h,\tilde{h},d,R)\), such that if

$$\begin{aligned} \Vert A(x)-R\Vert _{h}\le \epsilon \le \frac{D_0\gamma ^{4}}{\Vert A\Vert ^{C_0}}(h-\tilde{h})^{C_0\tau '}, \end{aligned}$$

then there exist \(B\in C_{\tilde{h}}^\omega ({{\mathbb {T}}}^d,SL(2,{{\mathbb {R}}}))\) and \(\tilde{A}\in SL(2,{{\mathbb {R}}})\) such that

$$\begin{aligned} B(x+\alpha )A(\theta )B(x)^{-1}=\tilde{A}, \end{aligned}$$

with estimates \(\Vert B-id\Vert _{\tilde{h}}\le \Vert A(x)-R\Vert _{h}^{\frac{1}{2}}\) and \(\Vert \tilde{A}-R\Vert \le \Vert A(x)-R\Vert _{h}\).

Proposition 5.1

([GYZ]) For any \(0<\tilde{h}<h\), \(\kappa>0,\gamma >0\), \(\tau >d-1\), \(\tau '>d-1\). Suppose that \(\alpha \in DC_d(\kappa ,\tau )\), \(\rho (\alpha ,A_0e^{f_0})\in DC_\alpha (\gamma ,\tau ')\). Then there exist \(B\in C_{\tilde{h}}^\omega ({{\mathbb {T}}}^d, PSL(2,{{\mathbb {R}}}))\) and \(A\in SL(2,{{\mathbb {R}}})\) satisfying

$$\begin{aligned} B^{-1}(x+\alpha )A_0e^{f_0(x)}B(x)=A, \end{aligned}$$

provided that \(\Vert f_0\Vert _h<\epsilon _*\) for some \(\epsilon _*>0\) depending on \(A_0,\kappa ,\tau ,\tau ',h,\tilde{h},d\). In particular, \(\Vert B\Vert _{\tilde{h}}\le C(\alpha ,V,d,\gamma ,\tau ',h,\tilde{h})\).

Remark 5.1

If \(A_0\) varies in \(\mathrm{SO}(2,{{\mathbb {R}}})\), then \(\epsilon _*\) can be taken uniform with respect to \(A_0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, L., You, J. Arithmetic version of Anderson localization via reducibility. Geom. Funct. Anal. 30, 1370–1401 (2020). https://doi.org/10.1007/s00039-020-00549-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-020-00549-x

Navigation