Skip to main content
Log in

Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Copper indium thiophosphate, CuInP2S6, has attracted much attention in recent years due to its van der Waals layered structure and robust ferroelectricity at room temperature. In this review, we aim to give an overview of the various properties of CuInP2S6, covering structural, ferroelectric, dielectric, piezoelectric and transport properties, as well as its potential applications. We also highlight the remaining questions and possible research directions related to this fascinating material and other compounds of the same family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  2. C. Gong and X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices, Science 363(6428), eaav4450 (2019)

    Article  Google Scholar 

  3. K. S. Burch, D. Mandrus, and J. G. Park, Magnetism in two-dimensional van der Waals materials, Nature 563(7729), 47 (2018)

    Article  ADS  Google Scholar 

  4. L. Mennel, M. M. Furchi, S. Wachter, M. Paur, D. K. Polyushkin, and T. Mueller, Optical imaging of strain in two-dimensional crystals, Nat. Commun. 9(1), 516 (2018)

    Article  ADS  Google Scholar 

  5. Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)

    Article  ADS  Google Scholar 

  6. F. Zhang, Z. Wang, J. Dong, A. Nie, J. Xiang, W. Zhu, Z. Liu, and C. Tao, Atomic-scale observation of reversible thermally driven phase transformation in 2D In2Se3, ACS Nano 13(7), 8004 (2019)

    Article  Google Scholar 

  7. T. Zhang, S. Wu, R. Yang, and G. Zhang, Graphene: Nanostructure engineering and applications, Front. Phys. 12(1), 127206 (2017)

    Article  ADS  Google Scholar 

  8. J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Exception alballistic transport in epitaxial graphene nanoribbons, Nature 506(349), 7488 (2014)

    Google Scholar 

  9. S. J. Liang, B. Cheng, X. Cui, and F. Miao, Van der Waals heterostructures for high-performance device applications: Challenges and opportunities, Adv. Mater. 6(1), 1903800 (2019)

    Article  Google Scholar 

  10. X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao, F. Liu, L. You, Q. Zeng, Y. Deng, C. Zhu, J. Zhou, Q. Fu, J. Wang, Y. Huang, and Z. Liu, Van der Waals negative capacitance transistors, Nat. Commun. 10(1), 3037 (2019)

    Article  ADS  Google Scholar 

  11. Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes, Nano Lett. 17(9), 5508 (2017)

    Article  ADS  Google Scholar 

  12. K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q. K. Xue, X. Chen, and S. H. Ji, Discovery of robust in-plane ferroelectricity in atomic-thick SnTe, Science 353(6296), 274 (2016)

    Article  ADS  Google Scholar 

  13. F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes, Nat. Commun. 7(1), 12357 (2016)

    Article  ADS  Google Scholar 

  14. S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10, 1775 (2019)

    Article  ADS  Google Scholar 

  15. Z. Guan, H. Hu, X. Shen, P. Xiang, N. Zhong, J. Chu, and C. Duan, Recent progress in two-dimensional ferroelectric materials, Adv. Electron. Mater. 6(1), 1900818 (2020)

    Article  Google Scholar 

  16. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)

    Article  ADS  Google Scholar 

  17. Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Wang, Z. Sun, Y. Yi, Y. Wu, S. Wu, J. Zhu, J. Wang, X. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)

    Article  ADS  Google Scholar 

  18. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)

    Article  ADS  Google Scholar 

  19. M. Wu and X. C. Zeng, Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues, Nano Lett. 16(5), 3236 (2016)

    Article  ADS  Google Scholar 

  20. W. Y. Tong, S. J. Gong, X. Wan, and C. G. Duan, Concepts of ferrovalley material and anomalous valley hall effect, Nat. Commun. 7(1), 13612 (2016)

    Article  ADS  Google Scholar 

  21. X. W. Shen, H. Hu, and C. G. Duan, Chapter 3: Two-dimensional ferrovalley materials, Spintronic 2D Materials, Eds. W. Q. Liu and Y. B. Xu, 2020, p. 65

  22. J. F. Scott, Ferroelectric Memories, Springer Science & Business Media, 2000

  23. J. Deng, Y. Liu, M. Li, S. Xu, Y. Lun, P. Lv, T. Xia, P. Gao, X. Wang, and J. Hong, Thickness-dependent inplane polarization and structural phase transition in van der Waals ferroelectric CuInP2S6, Small 16(1), 1904529 (2020)

    Article  Google Scholar 

  24. Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)

    Article  ADS  Google Scholar 

  25. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  26. M. A. Susner, M. Chyasnavichyus, M. A. McGuire, P. Ganesh, and P. Maksymovych, Metal thio- and selenophosphates as multifunctional van der Waals layered materials, Adv. Mater. 29(38), 1602852 (2017)

    Article  Google Scholar 

  27. X. Wang, Z. Song, W. Wen, H. Liu, J. Wu, C. Dang, M. Hossain, M. A. Iqbal, and L. Xie, Potential 2D materials with phase transitions: Structure, synthesis, and device applications, Adv. Mater. 31(45), 1804682 (2019)

    Article  Google Scholar 

  28. R. Brec, Review on structural and chemical properties of transition metal phosphorus trisulfides MPS3, Solid State Ion. 22(1), 3 (1986)

    Article  Google Scholar 

  29. A. Belianinov, Q. He, A. Dziaugys, P. Maksymovych, E. Eliseev, A. Borisevich, A. Morozovska, J. Banys, Y. Vysochanskii, and S. V. Kalinin, CuInP2S6 room temperature layered ferroelectric, Nano Lett. 15(6), 3808 (2015)

    Article  ADS  Google Scholar 

  30. M. Si, P. Y. Liao, G. Qiu, Y. Duan, and P. D. Ye, Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure, ACS Nano 12(7), 6700 (2018)

    Article  Google Scholar 

  31. J. A. Brehm, S. M. Neumayer, L. Tao, A. O’ Hara, M. Chyasnavichus, M. A. Susner, M. A. McGuire, S. V. Kalinin, S. Jesse, P. Ganesh, S. T. Pantelides, P. Maksymovych, and N. Balke, Tunable quadruple-well ferroelectric van der Waals crystals, Nat. Mater. 19(1), 43 (2020)

    Article  ADS  Google Scholar 

  32. N. Balke, S. M. Neumayer, J. A. Brehm, M. A. Susner, B. J. Rodriguez, S. Jesse, S. V. Kalinin, S. T. Pantelides, M. A. McGuire, and P. Maksymovych, Locally controlled Cu-ion transport in layered ferroelectric CuInP2S6, ACS Appl. Mater. Interfaces 10(32), 27188 (2018)

    Article  Google Scholar 

  33. M. A. Susner, M. Chyasnavichyus, A. A. Puretzky, Q. He, B. S. Conner, Y. Ren, D. A. Cullen, P. Ganesh, D. Shin, H. Demir, J. W. McMurray, A. Y. Borisevich, P. Maksymovych, and M. A. McGuire, Cation-eutectic transition via sublattice melting in CuInP2S6/In4/3P2S6 van der Waals layered crystals, ACS Nano 11(7), 7060 (2017)

    Article  Google Scholar 

  34. L. Chen, Y. Li, C. Li, H. Wang, Z. Han, H. Ma, G. Yuan, L. Lin, Z. Yan, X. Jiang, and J. M. Liu, Thickness dependence of domain size in 2D ferroelectric CuInP2S6 nanoflakes, AIP Adv. 9(11), 115211 (2019)

    Article  ADS  Google Scholar 

  35. L. Niu, F. Liu, Q. Zeng, X. Zhu, Y. Wang, P. Yu, J. Shi, J. Line, J. Zhou, Q. Fu, W. Zhou, T. Yu, X. Liu, and Z. Liu, Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes, Nano Energy 58, 596 (2019)

    Article  Google Scholar 

  36. M. Si, A. K. Saha, P. Y. Liao, S. Gao, S. M. Neumayer, J. Jian, J. Qin, N. B. Wisinger, H. Wang, P. Maksymovych, W. Wu, S. K. Gupta, and P. D. Ye, Room-temperature electrocaloric effect in layered ferroelectric CuInP2S6 for solid-state refrigeration, ACS Nano 13(8), 8760 (2019)

    Article  Google Scholar 

  37. S. M. Neumayer, E. A. Eliseev, M. A. Susner, A. Tselev, B. J. Rodriguez, J. A. Brehm, S. T. Pantelides, G. Panchapakesan, S. Jesse, S. V. Kalinin, M. A. McGuire, A. N. Morozovska, P. Maksymovych, and N. Balke, Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric, Phys. Rev. Mater. 3(2), 024401 (2019)

    Article  Google Scholar 

  38. M. A. Susner, A. Belianinov, A. Borisevich, Q. He, M. Chyasnavichyus, H. Demir, D. S. Sholl, P. Ganesh, D. L. Abernathy, M. A. McGuire, and P. Maksymovych, High-TC layered ferrielectric crystals by coherent spinodal decomposition, ACS Nano 9(12), 12365 (2015)

    Article  Google Scholar 

  39. Z. Sun, W. Xun, L. Jiang, J. L. Zhong, and Y. Z. Wu, Strain engineering to facilitate the occurrence of 2D ferroelectricity in CuInP2S6 monolayer, J. Phys. D Appl. Phys. 52(46), 465302 (2019)

    Article  Google Scholar 

  40. L. You, Y. Zhang, S. Zhou, A. Chaturvedi, S. A. Morris, F. Liu, L. Chang, D. Ichinose, H. Funakubo, W. Hu, T. Wu, Z. Liu, S. Dong, and J. Wang, Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric, Sci. Adv. 5(4), eaav3780 (2019)

    Article  ADS  Google Scholar 

  41. S. Zhou, L. You, A. Chaturvedi, S. A. Morris, J. S. Herrin, N. Zhang, A. Abdelsamie, Y. Hu, J. Chen, Y. Zhou, S. Dong, and J. Wang, Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor, Mater. Horiz. 7(1), 263 (2020)

    Article  Google Scholar 

  42. V. Maisonneuve, M. Evain, C. Payen, V. B. Cajipe, and P. Molinie, Room-temperature crystal structure of the layered phase CuIInIIIP2S6, J. Alloys Compd. 218(2), 157 (1995)

    Article  Google Scholar 

  43. S. Lee, P. Colombet, G. Ouvrard, and R. Brec, General trends observed in the substituted thiophosphate family. Synthesis and structure of silver scandium thiophosphate, AgScP2S6, and cadmium iron thiophosphate, CdFeP2S6, Inorg. Chem. 27(7), 1291 (1988)

    Article  Google Scholar 

  44. J. K. Burdett and O. Eisenstein, From three-to fourcoordination in copper (I) and silver (I), Inorg. Chem. 31(10), 1758 (1992)

    Article  Google Scholar 

  45. S. H. Wei, S. B. Zhang, and A. Zunger, Off-center atomic displacements in zinc-blende semiconductor, Phys. Rev. Lett. 70(11), 1639 (1993)

    Article  ADS  Google Scholar 

  46. V. Maisonneuve, V. B. Cajipe, A. Simon, R. Von Der Muhll, and J. Ravez, Ferrielectric ordering in lamellar CuInP2S6, Phys. Rev. B 56(17), 10860 (1997)

    Article  ADS  Google Scholar 

  47. A. Simon, J. Ravez, V. Maisonneuve, C. Payen, and V. B. Cajipe, Paraelectric-ferroelectric transition in the lamellar thiophosphate CuInP2S6, Chem. Mater. 6(9), 1575 (1994)

    Article  Google Scholar 

  48. A. Dziaugys, V. V. Shvartsman, J. Macutkevic, J. Banys, Y. Vysochanskii, and W. Kleemann, Phase diagram of mixed Cu(InxCrx)P2S6 crystals, Phys. Rev. B 85(13), 134105 (2012)

    Article  ADS  Google Scholar 

  49. Q. He, A. Belianinov, A. Dziaugys, P. Maksymovych, Y. Vysochanskii, S. V. Kalinin, and A. Y. Borisevich, Antisite defects in layered multiferroic CuCr0.9In0.1P2S6, Nanoscale 7(44), 18579 (2015)

    Article  ADS  Google Scholar 

  50. A. Dziaugys, J. Banys, J. Macutkevic, and Y. Vysochanskii, Anisotropy effects in thick layered CuInP2S6 and CuInP2Se6 crystals, Phase Transit. 86(9), 878 (2013)

    Article  Google Scholar 

  51. Y. Vysochanskii, R. Yevych, L. Beley, V. Stephanovich, V. Mytrovcij, O. Mykajlo, A. Molnar, and M. Gurzan, Phonon spectra and phase transitions in CuInP2(SexS1−x)6 ferroelectrics, Ferroelectrics 284(1), 161 (2003)

    Article  Google Scholar 

  52. A. Dziaugys, J. Banys, J. Macutkevic, R. Sobiestianskas, and Y. Vysochanskii, Dipolar glass phase in ferrielectrics: CuInP2S6 and Ag0.1Cu0.9InP2S6 crystals, Phys. Status Solid. A 207(8), 1960 (2010)

    Article  ADS  Google Scholar 

  53. G. Burr, E. Durand, M. Evain, and R. Brec, Low-temperature copper ordering in the layered thiophosphate CuVP2S6: A time-of-flight neutron powder diffraction study, J. Solid State Chem. 103(2), 514 (1993)

    Article  ADS  Google Scholar 

  54. A. Grzechnik, V. B. Cajipe, C. Payen, and P. F. McMillan, Pressure-induced phase transition in ferrielectric CuInP2S6, Solid State Commun. 108(1), 43 (1998)

    Article  ADS  Google Scholar 

  55. V. S. Shusta, I. P. Prits, P. P. Guranich, E. I. Gerzanich, and A. G. Slivka, Dielectric properties of CuInP2S6 crystals under high pressure, Condens. Matter Phys. 10(1), 91 (2007)

    Article  Google Scholar 

  56. P. P. Guranich, A. G. Slivka, V. S. Shusta, O. O. Gomonnai, and I. P. Prits, Optical and dielectric properties of CuInP2S6 layered crystals at high hydrostatic pressure, J. Phys. Conf. Ser. 121(2), 022015 (2008)

    Article  Google Scholar 

  57. A. Dziaugys, J. Banys, and Y. Vysochanskii, Broadband dielectric investigations of indium rich CuInP2S6 layered crystals, Z. Kristallogr. Cryst. Mater. 226(2), 171 (2011)

    Article  Google Scholar 

  58. A. Dziaugys, J. Banys, V. Samulionis, J. Macutkevic, Y. Vysochanskii, V. Shvartsman, and W. Kleemann, Phase transitions in layered semiconductor-ferroelectrics, in: Ferroelectrics-Characterization and Modeling, IntechOpen, 2011

  59. G. A. Samara, T. Sakudo, and K. Yoshimitsu, Important generalization concerning the role of competing forces in displacive phase transitions, Phys. Rev. Lett. 35(26), 1767 (1975)

    Article  ADS  Google Scholar 

  60. A. K. Jonscher, Dielectric relaxation in solids, J. Phys. D Appl. Phys. 32(14), R57 (1999)

    Article  ADS  Google Scholar 

  61. A. K. Jonscher, The “universal” dielectric response, Nature 267(5613), 673 (1977)

    Article  ADS  Google Scholar 

  62. V. Maisonneuve, J. M. Reau, M. Dong, V. B. Cajipe, C. Payen, and J. Ravez, Ionic conductivity in ferroic CuInP2S6 and CuCrP2S6, Ferroelectrics 196(1), 257 (1997)

    Article  Google Scholar 

  63. Y. M. Vysochanskii, A. A. Molnar, V. A. Stephanovich, V. B. Cajipe, and X. Bourdon, Dipole ordering and critical behavior of the static and dynamic properties in three-dimensional and layered MM P2X crystals (M, M =Sn, Cu, In; X=S, Se), Ferroelectrics 226(1), 243 (1999)

    Article  Google Scholar 

  64. J. Banys, J. Macutkevic, V. Samulionis, A. Brilingas, and Y. Vysochanskii, Dielectric and ultrasonic investigation of phase transition in CuInP2S6 crystals, Phase Transit. 77(4), 345 (2004)

    Article  Google Scholar 

  65. J. Grigas, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials, Gordon and Breach Science Publ, OPA Amsterdam, 1996

    Google Scholar 

  66. J. F. Scott, Soft-mode spectroscopy: Experimental studies of structural phase transitions, Rev. Mod. Phys. 46(1), 83 (1974)

    Article  ADS  Google Scholar 

  67. D. Xu, R. Ma, Y. Zhao, Z. Guan, Q. Zhong, R. Huang, P. Xiang, N. Zhong, and C. Duan, Unconventional out-of-plane domain inversion via in-plane ionic migration in a van der Waals ferroelectric, J. Mater. Chem. C 8(21), 6966 (2020)

    Article  Google Scholar 

  68. R. R. Mehta, B. D. Silverman, and J. T. Jacobs, Depolarization fields in thin ferroelectric films, J. Appl. Phys. 44(8), 3379 (1973)

    Article  ADS  Google Scholar 

  69. M. Chyasnavichyus, M. A. Susner, A. V. Ievlev, E. A. Eliseev, S. V. Kalinin, N. Balke, A. N. Morozovska, M. A. McGuire, and P. Maksymovych, Size-effect in layered ferrielectric CuInP2S6, Appl. Phys. Lett. 109(17), 172901 (2016)

    Article  ADS  Google Scholar 

  70. M. F. Chisholm, W. Luo, M. P. Oxley, S. T. Pantelides, and H. N. Lee, Atomic-scale compensation phenomena at polar interfaces, Phys. Rev. Lett. 105(19), 197602 (2010)

    Article  ADS  Google Scholar 

  71. G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Domain wall nanoelectronics, Rev. Mod. Phys. 84(1), 119 (2012)

    Article  ADS  Google Scholar 

  72. M. Dawber, A. Gruverman, and J. F. Scott, Skyrmion model of nano-domain nucleation in ferroelectrics and ferromagnets, J. Phys.: Condens. Matter 18(5), L71 (2006)

    ADS  Google Scholar 

  73. W. J. Hu, D. M. Juo, L. You, J. Wang, Y. C. Chen, Y. H. Chu, and T. Wu, Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films, Sci. Rep. 4(1), 4772 (2015)

    Article  Google Scholar 

  74. Y. W. So, D. J. Kim, T. W. Noh, J. G. Yoon, and T. K. Song, Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films, Appl. Phys. Lett. 86(9), 092905 (2005)

    Article  ADS  Google Scholar 

  75. Y. Ishibashi and Y. Takagi, Note on ferroelectric domain switching, J. Phys. Soc. Jpn. 31(2), 506 (1971)

    Article  ADS  Google Scholar 

  76. A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films, Phys. Rev. B 66(21), 214109 (2002)

    Article  ADS  Google Scholar 

  77. I. W. Chen, and Y. Wang, Activation field and fatigue of (Pb,La)(Zr,Ti)O3 thin films, Appl. Phys. Lett. 75(26), 4186 (1999)

    Article  ADS  Google Scholar 

  78. H. Ma, W. Gao, J. Wang, T. Wu, G. Yuan, J. Liu, and Z. Liu, Ferroelectric polarization switching dynamics and domain growth of triglycine sulfate and imidazolium perchlorate, Adv. Electron. Mater. 2(6), 1600038 (2016)

    Article  Google Scholar 

  79. W. J. Merz, Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals, Phys. Rev. 95(3), 690 (1954)

    Article  ADS  Google Scholar 

  80. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, and O. Eriksson, Theoretical investigation of magnetoelectric behavior in BiFeO3, Phys. Rev. B 74(22), 224412 (2006)

    Article  ADS  Google Scholar 

  81. R. Landauer, Electrostatic considerations in BaTiO3 domain formation during polarization reversal, J. Appl. Phys. 28(2), 227 (1957)

    Article  ADS  Google Scholar 

  82. P. Ben Ishai, C. E. M. de Oliveira, Y. Ryabov, A. J. Agranat, and Y. Feldman, Unusual glass-like systems-relaxation dynamics of Cu+ ions in ferroelectric KTN crystals, J. Non-Cryst. Solids 351(33–36), 2786 (2005)

    Article  ADS  Google Scholar 

  83. I. Katsouras, K. Asadi, M. Li, T. B. van Driel, K. S. Kjær, D. Zhao, T. Lenz, Y. Gu, P. W. M. Blom, D. Damjanovic, M. M. Nielsen, and D. M. de Leeuw, The negative piezoelectric effect of the ferroelectric polymer poly (vinylidene fluoride), Nat. Mater. 15(1), 78 (2016)

    Article  ADS  Google Scholar 

  84. V. S. Bystrov, E. V. Paramonova, I. K. Bdikin, A. V. Bystrova, R. C. Pullar, and A. L. Kholkin, Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly (vinylidene fluoride) (PVDF), J. Mol. Model. 19(9), 3591 (2013)

    Article  Google Scholar 

  85. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys. Rev. B 56(16), R10024 (1997)

    Article  ADS  Google Scholar 

  86. S. Liu and R. E. Cohen, Origin of negative longitudinal piezoelectric effect, Phys. Rev. Lett. 119(20), 207601 (2017)

    Article  Google Scholar 

  87. M. G. Broadhurst and G. T. Davis, Physical basis for piezoelectricity in PVDF, Ferroelectrics 60(1), 3 (1984)

    Article  Google Scholar 

  88. R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sens. Act. A Phys. 64(1), 77 (1998)

    Article  Google Scholar 

  89. I. Urbanaviciute, X. Meng, M. Biler, Y. Wei, T. D. Cornelissen, S. Bhattacharjee, M. Linares, and M. Kemerink, Negative piezoelectric effect in an organic supramolecular ferroelectric, Mater. Horiz. 6(8), 1688 (2019)

    Article  Google Scholar 

  90. J. Kim, K. M. Rabe, and D. Vanderbilt, Negative piezoelectric response of van der Waals layered bismuth tellurohalides, Phys. Rev. B 100(10), 104115 (2019)

    Article  ADS  Google Scholar 

  91. D. M. Bercha, S. Bercha, K. Glukhov, and M. Sznajder, Electron-phonon interaction as a mechanism of phase transition in the CuInP2S6 crystal, Acta Phys. Pol. A 126(5), 1143 (2014)

    Article  ADS  Google Scholar 

  92. D. M. Bercha, S. A. Bercha, K. E. Glukhov, and M. Sznajder, Vibronic interaction in crystals with the Jahn-Teller centers in the elementary energy bands concept, Condens. Matter Phys. 18(3), 33705 (2015)

    Article  Google Scholar 

  93. T. Babuka, K. Glukhov, Y. Vysochanskii, and M. Makowska-Janusik, Layered ferrielectric crystals CuInP2S(Se)6: A study from the first principles, Phase Transit. 92(5), 440 (2019)

    Article  Google Scholar 

  94. T. Babuka, K. Glukhov, Y. Vysochanskii, and M. Makowska-Janusik, Structural, electronic, vibration and elastic properties of the layered AgInP2S6 semiconducting crystal-DFT approach, RSC Adv. 8(13), 6965 (2018)

    Article  ADS  Google Scholar 

  95. Y. Fagot-Revurat, X. Bourdon, F. Bertran, V. B. Cajipe, and D. Malterre, Interplay between electronic and crystallographic instabilities in the low-dimensional ferroelectric CuInP2Se6, J. Phys.: Condens. Matter 15(3), 595 (2003)

    ADS  Google Scholar 

  96. C. Zhang, Y. Nie, and A. Du, Intrinsic ultrahigh negative Poisson’s ratio in two-dimensional ferroelectric ABP2X6 Materials, Acta Physico-Chimica Sinica 35(10), 1128 (2019)

    Article  Google Scholar 

  97. Y. M. Vysochanskii, V. A. Stephanovich, A. A. Molnar, V. B. Cajipe, and X. Bourdon, Raman spectroscopy study of the ferrielectric-paraelectric transition in layered CuInP2S6, Phys. Rev. B 58(14), 9119 (1998)

    Article  ADS  Google Scholar 

  98. T. V. Misuryaev, T. V. Murzina, O. A. Aktsipetrov, N. E. Sherstyuk, V. B. Cajipe, and X. Bourdon, Second harmonic generation in the lamellar ferrielectric CuInP2S6, Solid State Commun. 115(11), 605 (2000)

    Article  ADS  Google Scholar 

  99. I. P. Studenyak, V. V. Mitrovcij, G. S. Kovacs, M. I. Gurzan, O. A. Mykajlo, Y. M. Vysochanskii, and V. B. Cajipe, Disordering effect on optical absorption processes in CuInP2S6 layered ferrielectrics, Phys. Stat. Solid. B 236(3), 678 (2003)

    Article  ADS  Google Scholar 

  100. M. Moustafa, A. Wasnick, C. Janowitz, and R. Manzke, Temperature shift of the absorption edge and Urbach tail of ZrSxSe2−x single crystals, Phys. Rev. B 95(24), 245207 (2017)

    Article  ADS  Google Scholar 

  101. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev. 92(5), 1324 (1953)

    Article  ADS  Google Scholar 

  102. M. Kranjčec, D. I. Desnica, B. Celustka, G. S. Kovacs, and I. P. Studenyak, Fundamental optical absorption edge and compositional disorder in γ1-(GaxIn1−x)2Se3 single crystals, Phys. Stat. Solid. A 144(1), 223 (1994)

    Article  ADS  Google Scholar 

  103. V. Samulionis, J. Banys, Yu. Vysochanskii, and V. Cajipe, Elastic and electromechanical properties of new ferroelectric-semiconductor materials of Sn2P2S6 family, Ferroelectrics 257(1), 113 (2001)

    Article  Google Scholar 

  104. V. Samulionis, J. Banys, and Y. Vysochanskii, Linear and nonlinear elastic properties of CuInP2S6 layered crystals under polarization reversal, Ferroelectrics 389(1), 18 (2009)

    Article  Google Scholar 

  105. V. Samulionis, J. Banys, and Y. Vysochanskii, The characterization of two dimensional electrostrictive CuInP2S6 materials for transducers, in: Materials science forum, Vol. 514, pp 230–234, Trans Tech Publications, 2006

  106. V. Samulionis, J. Banys, and Y. Vysochanskii, Ultrasonic and piezoelectric studies of phase transitions in two-dimensional CuInP2S6 type crystals, Ferroelectrics 379(1), 69 (2009)

    Article  Google Scholar 

  107. A. Dziaugys, J. Banys, V. Samulionis, and Y. Vysochanskii, Dielectric and ultrasonic studies of new Aga1Cu0.9InP2S6 layered ferroelectric compound, Ultragarsas 63(3), 7 (2008)

    Google Scholar 

  108. A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, Solid-state memories based on ferroelectric tunnel junctions, Nat. Nanotechnol. 7(2), 101 (2012)

    Article  ADS  Google Scholar 

  109. A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)

    Article  Google Scholar 

  110. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)

    Article  ADS  Google Scholar 

  111. S. Wan, Y. Li, W. Li, X. Mao, C. Wang, C. Chen, J. Dong, A. Nie, J. Xiang, Z. Liu, W. Zhu, and H. Zeng, Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3, Adv. Funct. Mater. 29(20), 1808606 (2019)

    Article  Google Scholar 

  112. W. Huang, F. Wang, L. Yin, R. Cheng, Z. Wang, M. G. Sendeku, J. Wang, N. Li, Y. Yao, and J. He, Gatecoupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions, Adv. Mater. 32(14), 1908040 (2020)

    Article  Google Scholar 

  113. X. Wang, C. Liu, Y. Chen, G. Wu, X. Yan, H. Huang, P. Wang, B. Tian, Z. Hong, Y. Wang, Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels, 2D Mater. 4(2), 025036 (2017)

    Article  Google Scholar 

  114. H. S. Lee, S. W. Min, M. K. Park, Y. T. Lee, P. J. Jeon, J. H. Kim, S. Ryu, and S. Im, MoS2 nanosheets for topgate nonvolatile memory transistor channel, Small 8(20), 3111 (2012)

    Article  Google Scholar 

  115. A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, and S. Salahuddin, Negative capacitance in a ferroelectric capacitor, Nat. Mater. 14(2), 182 (2015)

    Article  ADS  Google Scholar 

  116. X. Wang, Y. Chen, G. Wu, D. Li, L. Tu, S. Sun, H. Shen, T. Lin, Y. Xiao, M. Tang, W. Hu, L. Liao, P. Zhou, J. Sun, X. Meng, J. Chu, and J. Wang, Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating, npj 2D Mater. Appl. 1(1), 38 (2017)

    Article  ADS  Google Scholar 

  117. M. Si, C. Jiang, W. Chung, Y. Du, M. A. Alam, and P. D. Ye, Steep-slope WSe2 negative capacitance field-effect transistor, Nano Lett. 18(6), 3682 (2018)

    Article  ADS  Google Scholar 

  118. M. Si, C.J. Su, C. Jiang, N. J. Conrad, H. Zhou, K. D. Maize, G. Qiu, C.T. Wu, A. Shakouri, M. A. Alam, and P. D. Ye, Steep-slope hysteresis-free negative capacitance MoS2 transistors, Nat. Nanotechnol. 13(1), 24 (2018)

    Article  ADS  Google Scholar 

  119. H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.J. Li, M. Dubey, J. Kong, and T. Palacios, Integrated circuits based on bilayer MoS2 transistors, Nano Lett. 12(9), 4674 (2012)

    Article  ADS  Google Scholar 

  120. J. Wu, H.Y. Chen, N. Yang, J. Cao, X. Yan, F. Liu, Q. Sun, X. Ling, J. Guo, and H. Wang, High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation, Nat. Elctron. 3, 466 (2020)

    Google Scholar 

  121. B. A. Tuttle and D. A. Payne, The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics, Ferroelectrics 37(1), 603 (1981)

    Article  Google Scholar 

  122. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3, Science 311(5765), 1270 (2006)

    Article  ADS  Google Scholar 

  123. R. Ma, Z. Zhang, K. Tong, D. Huber, R. Kornbluh, Y. S. Ju, and Q. Pei, Highly efficient electrocaloric cooling with electrostatic actuation, Science 357(6356), 1130 (2017)

    Article  ADS  Google Scholar 

  124. H. Hu, W. Tong, Y. Shen, and C. G. Duan, Electrical control of the valley degree of freedom in 2D ferroelectric/antiferromagnetic heterostructures, J. Mater. Chem. C 8(24), 8098 (2020)

    Article  Google Scholar 

  125. S. M. Neumayer, L. Tao, A. O’ Hara, J. Brehm, M. Si, P. Y. Liao, T. Feng, S. V. Kalinin, P. D. Ye, S. T. Pantelides, P. Maksymovych, and N. Balke, Alignment of polarization against an electric field in van der Waals ferroelectrics, Phys. Rev. Appl. 13(6), 064063 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This review was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11904176, 61874060, 61911530220, U1932159, and 11774249), the Natural Science Foundation of Jiangsu Higher Education Institutions (Grant No. 19KJB140004), the startup found from NJUPT (Grant Nos. NY219028 and NY217118), NSF of Jiangsu Province (Grant Nos. BK20181388 and BK20171209), and the Key University Science Research Project of Jiangsu Province (Grant No. 18KJA140004). The authors also gratefully acknowledge the startup fund from Soochow University, Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, Jiangsu Specially-Appointed Professor program, and the startup grant from Southern University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu You or Junling Wang.

Additional information

This article also can be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-0986-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., You, L., Zhou, H. et al. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys. 16, 13301 (2021). https://doi.org/10.1007/s11467-020-0986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0986-0

Keywords

Navigation