Skip to main content
Log in

The EUP Dirac Oscillator: A Path Integral Approach

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The Green function for Dirac oscillator in \((1+1)\) dimension in the context of the extended uncertainty principle (EUP) is calculated exactly via the path integral formalism. The spectrum energy is determined, the corresponding wave functions suitably normalized are derived and they are expressed by the Gegenbauer’s polynomials. Special cases are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R.P. Feynman, A. Hibbs, Quantum mechanics and path integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  2. L.S. Schulman, Techniques and applications of path integration (Wiley, New York, 1981)

    MATH  Google Scholar 

  3. M. Petras, Czech. J. Phys. B 39, 1208 (1989)

    Google Scholar 

  4. A.O. Barut, N. Zanghi, Phys. Rev. Lett. 52, 2009 (1984)

    ADS  MathSciNet  Google Scholar 

  5. T. Boudjedaa, A. Bounames, L. Chetouani, T.F. Hammann, K. Nouicer, J. Math. Phys. 36, 1602 (1995)

    ADS  MathSciNet  Google Scholar 

  6. M. Merad, T. Boudjedaa, L. Chetouani, J. Korean Physical Society 38, 69 (2001)

    Google Scholar 

  7. T. Boudjedaa, M. Merad, Int. J. Mod. Phys A 34, 1950101 (2019)

    ADS  Google Scholar 

  8. F.A. Berezin, M.S. Marinov, Ann. Phys. 104, 336 (1977)

    ADS  Google Scholar 

  9. E.S. Fradkin, D.M. Gitman, Phys. Rev. D 44, 3230 (1991)

    ADS  MathSciNet  Google Scholar 

  10. D.M. Gitman, A.V. Saa, Class. Grav. 10, 1447 (1993)

    ADS  Google Scholar 

  11. R. Rekioua, T. Boujdedaa, Eur. Phys. J. C 49, 1091 (2007)

    ADS  Google Scholar 

  12. A. Kempf, J. Math. Phys. 35, 4483 (1994)

    ADS  MathSciNet  Google Scholar 

  13. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)

    ADS  MathSciNet  Google Scholar 

  14. L. Buoninfante, G.G. Luciano, L. Petruzziello, Eur. Phys. J. C 79, 663 (2019)

    ADS  Google Scholar 

  15. J. Gamboa, M. Loewe, J.C. Rojas, Phys. Rev. D 64, 067901 (2001)

    ADS  MathSciNet  Google Scholar 

  16. M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001)

    ADS  Google Scholar 

  17. H. Benzair, M. Merad, T. Boudjedaa, Int. J. Mod. Phys A 29, 1450037 (2014)

    ADS  Google Scholar 

  18. H. Benzair, M. Merad, T. Boudjedaa, Int. J. Mod. Phys A 33, 1850186 (2018)

    ADS  Google Scholar 

  19. H. Benzair, T. Boudjedaa, M. Merad, J. Math. Phys. 53, 123516 (2012)

    ADS  MathSciNet  Google Scholar 

  20. H. Benzair, T. Boudjedaa, M. Merad, Eur. Phys. J. Plus 132, 94 (2017)

    Google Scholar 

  21. H. Benzair, M. Merad, T. Boudjedaa, A. Makhlouf, Z. Naturforsch, A 67, 11013 (2012)

    Google Scholar 

  22. A. Benchikha, M. Merad, Int. J. Mod. Phys A 32, 1750194 (2017)

    ADS  Google Scholar 

  23. A. Benchikha, L. Chetouani, Cent. Eu. J. Phys 12, 392 (2018)

    Google Scholar 

  24. A. Benchikha, L. Chetouani, Mod. Phys. Lett. A 28, 1350079 (2013)

    ADS  Google Scholar 

  25. S. Mignemi, Mod. Phys. Lett. A 25, 1697 (2010)

    ADS  Google Scholar 

  26. S. Mignemi, Phys. Rev. D 84, 025021 (2011)

    ADS  Google Scholar 

  27. W.S. Chung, H. Hassanabadi, J. Korean Phys. Soc. 71, 1 (2017)

    Google Scholar 

  28. B. Hamil, M. Merad, Eur. Phys. J. Plus. 133, 174 (2018)

    ADS  Google Scholar 

  29. B. Hamil, M. Merad, Few-Body Syst. 60, 36 (2019)

    ADS  Google Scholar 

  30. R. N. Costa Filho, J. P. M. Braga, J. H. S. Lira, J. S. Andrade, Phys. Lett. B 755, 367 (2016)

  31. D. Ito, K. Mori, E. Carreri, Nuovo Cim. A 51, 1119 (1967)

    ADS  Google Scholar 

  32. M. Moshinsky, A. Szczepaniak, J. Phys. A: Math. Gen. 22, L817 (1989)

    ADS  Google Scholar 

  33. A. Bermudez, M.A. Martin-Delgado, E. Solano, Phys. Rev. A 76, 041801 (2007)

    ADS  Google Scholar 

  34. J. Munarriz, F. Dominguez-Adame, R. Lima, Phys. Lett. A 376, 3475 (2012)

    ADS  Google Scholar 

  35. Z.Y. Luo, Q. Wang, X. Li, J. Jing, Int. J. Theor. Phys. 51, 2143 (2012)

    Google Scholar 

  36. C. Quimbay, P. Strange (2013). arXiv:1311.2021

  37. Mu-Lin Yan, De Sitter invariant special relativity (World Scientific, Singapore, 2015)

    MATH  Google Scholar 

  38. R. Aldrovandi, J.P. Beltran Almeida, J.P. Pereira, Class. Quantum Grav. 24, 1385 (2007)

    ADS  Google Scholar 

  39. S. Mignemi, Ann. Phys. 522, 924 (2010)

    MathSciNet  Google Scholar 

  40. S. Ghosh, S. Mignemi, Int. J. Theor. Phys. 50, 1803 (2011)

    Google Scholar 

  41. W.S. Chung, H. Hassanabadi, Phys. Lett. B 785, 127 (2018)

    ADS  Google Scholar 

  42. C. Alexandrou, R. Rosenfelder, A.W. Schreiber, Phys. Rev. A 59, 1762 (1999)

    ADS  MathSciNet  Google Scholar 

  43. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics (World Scientific, Singapore, 1990)

    MATH  Google Scholar 

  44. D.C. Khandekar, S.V. Lawande, K.V. Bhagwat, Path Integral methods and their applications (World scientific, Singapore, 1993)

    MATH  Google Scholar 

  45. C. Grosche, F. Steiner, Handbook of Feynman Path Integrals (Springer, Berlin, 1998)

    MATH  Google Scholar 

  46. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980)

    MATH  Google Scholar 

  47. R.P. Martinez-y-Romero, H.N. Nunez-Yepez, A.L. Salas-Brito, Eur. J. Phys. 16, 135 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Merad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merad, A., Aouachria, M. & Benzair, H. The EUP Dirac Oscillator: A Path Integral Approach. Few-Body Syst 61, 36 (2020). https://doi.org/10.1007/s00601-020-01570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01570-4

Navigation