Skip to main content

Advertisement

Log in

Assessment of occupational exposure to fine particulate matter in dental prosthesis laboratories in Kocaeli, Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dental prosthesis laboratories (DPLs) are among the workplaces where predominantly manual production takes place. In such working environments, during the manual manufacturing process, which involves fine smoothing and polishing of dental prostheses, fine particulate matter is released into the ambient air. In this study, the particulate matter (PM) concentrations and elemental content of the fine particles in the working ambient air were identified in six DPLs in Kocaeli, Turkey. PM2.5 mass concentrations, measured in all the DPLs, ranged between 80.8 and 1645 μg/m3 (mean 414 ± 406). As a result of the analyses performed with an ICP-MS device (Perkin Elmer Elan®DRC-e), trace elements of Be, Cd, Hg, and, notably, Co, Cr, Mo, and Ni were found. The researchers calculated the excess lifetime cancer risks and total hazard indexes. The average total cancer risk for all the DPLs was 8 × 10−3, which is higher than the acceptable limit of 1.0 × 10−6, and the total hazard index was 187, which is greater than the acceptable limit of 1.0. Considering these high-level risks, the study concluded that there is a need for new production methods, and strict application of occupational health and safety measures, to reduce the fine particle exposure of the workers in the laboratories. In addition, there are prescribed limit values for particulate matter only for respirable particles in working environments. The establishment of limit values, especially for PM2.5 concentrations, is important for the protection of the health of the employees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abakay, A., Atılgan, S., Abakay, O., Atalay, Y., Güven, S., Yaman, F., et al. (2013). Frequency of respiratory function disorders among dental laboratory technicians working under conditions of high dust concentration. European Review for Medical and Pharmacological Sciences, 17, 809–814.

    CAS  Google Scholar 

  • AHA, American Heart Association. (2010). Particulate matter air pollution and cardiovascular disease, an update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378.

    Google Scholar 

  • Akgun, M., & Ergan, B. (2018). Silicosis in Turkey: Is it an endless nightmare or is there still hope? Turkis Thoracic Journal, 19, 89–93.

    Google Scholar 

  • Akkurt, I. (2014). Occupational respiratory diseases. Ankara: Günes Medical Publisher (in Turkish).

    Google Scholar 

  • Alavi, A., Shakiba, M., Tangestani, A., Massahnia, S., & Shiari, A. (2011). Respiratory findings in dental laboratory technicians in rasht (North of Iran). Tanaffos., 10(2), 44–49.

    Google Scholar 

  • Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A., & Galloo, J. C. (2010). PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French ındustrial zone. Atmospheric Research, 96, 612–625.

    CAS  Google Scholar 

  • Almeida, S. M., Canha, N., Silva, A., Freitas, M. C., Pegas, P., Alves, C., et al. (2011). Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmospheric Environment, 45, 7594–7599.

    CAS  Google Scholar 

  • Baran, I., & Nalcaci, R. (2007). Dental materials and allergic reactions. The Journal of Faculty of Dentistry of Ataturk University, 2, 26–32 (in Turkish).

    Google Scholar 

  • Bell, M.L. (2012). Assessment of the health impacts of particulate matter characteristics. Research Report 161, Health Effects Institute Boston, Massachusetts, USA.

  • Bernstein, J. A., Alexis, N., Bacchus, H., Bernstein, I. L., Fritz, P., Horner, E., et al. (2008). The health effects of nonindustrial indoor air pollution. The Journal of Allergy and Clinical Immunology, 121, 585–591.

    CAS  Google Scholar 

  • Betha, R., & Balasubramanian, R. (2011). Emissions of particulate-bound elements from stationary diesel engine: Characterization and risk assessment. Atmospheric Environment, 45, 5273–5281.

    CAS  Google Scholar 

  • Beyan, A. C., Alici, N. S., & Cimrin, A. (2017). Assessment of work-related asthma cases: Our three-year experience. Pakistan Journal of Medical Sciences, 33(5), 1230–1235.

    Google Scholar 

  • Blackwell, E., Nesbit, M., & Petridis, H. (2017). Survey on the use of CAD-CAM technology by UK and Irish dental technicians. British Dental Journal, 222(9), 689–693.

    CAS  Google Scholar 

  • Burgaz, S., Demircigil, G. C., Yilmazer, M., Ertas, N., Kemaloglu, Y., & Burgaz, Y. (2002). Assessment of cytogenetic damage in lymphocytes and in exfoliated nasal cells of dental laboratory technicians exposed to Chromium, Cobalt, and Nickel. Mutation Research, 521, 47–56.

    CAS  Google Scholar 

  • Cao, S., Duan, X., Zhao, X., Wang, B., Ma, J., Fan, D., Sun, C., He, B., Wei, F., & Jiang, G. (2015). Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China. Environmental Pollution, 200, 16–23.

    CAS  Google Scholar 

  • Çelik, E., & Tekmen, C. (2004). Tooth prosthesis laboratory materials. Dokuz Eylül University Engineering Faculty Journal of Science and. Engineering, 6(2), 81–93 (in Turkish).

    Google Scholar 

  • Chao, C. Y., & Wong, K. K. (2002). Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition. Atmospheric Environment, 36, 265–277.

    CAS  Google Scholar 

  • Cokic, S. M., Hoet, P., Godderis, L., Wiemann, M., Asbach, C., Reichl, F. X., et al. (2016). Cytotoxic effects of composite dust on humanbronchial epithelial cells. Dental Materials, 32, 1482–1491.

    CAS  Google Scholar 

  • Corzinei, J. S., & Mauriello, M. N. (2009). Guidance on risk assessment for air contaminant emissions. New Jersey Department of Environmental Protection (NJDEP) Division of Air Quality. Tech-man, 1003, 20–24.

    Google Scholar 

  • Covington, J. S., McBride, M. A., Slagle, W. F., & Disney, A. L. (1985). Quantization of nickel and beryllium leakage from base metal casting alloys. The Journal of Prosthetic Dentistry, 54, 127–136.

    CAS  Google Scholar 

  • da Silva, L. H., de Lima, E., Miranda, R. B. P., Favero, S. S., Lohbauer, U., & Cesar, P. F. (2017). Dental ceramics: a review of new materials and processing methods. Brazilian Oral Research, 31(suppl), e58 133-146.

    Google Scholar 

  • Ergün, D., Ergün, R., Özdemir, C., Öziş, T. N., Yılmaz, H., & Akkurt, I. (2014). Pneumoconiosis and respiratory problems in dental laboratory technicians: analysis of 893 dental technicians. International Journal of Occupational Medicine and Environmental Health, 27(5), 785–796.

    Google Scholar 

  • Fabrizio, E., Vanacore, N., Valente, M., Rubino, A., & Meco, G. (2007). High prevalence of extrapyramidal signs and symptoms in a group of Italian dental technicians. BMC Neurology, 7(24), 1–5.

    Google Scholar 

  • Fang, G. C., Wu, Y. S., Chang, S. Y., Huang, S. H., & Rau, J. Y. (2006). Size distributions of ambient air particles and enrichment factor analyses of metallic elements at Taichung Harbor near the Taiwan Strait. Atmospheric Research, 81, 320–333.

    CAS  Google Scholar 

  • Gbogbo, F., Rainhill, J. E., Koranteng, S. S., Owusu, E. H., & Dorleku, W. P. (2019). Health risk assessment for human exposure to trace metals via bushmeat in Ghana. Biological Trace Element Research. https://doi.org/10.1007/s12011-019-01953-7.

  • Hariyani, N., Berniyatni, T., & Setyowati, D. (2015). Effects of occupational environmental controls on the level of Co, Ni, Cr among dental technicians. IJESD, 6(9), 644–646.

    Google Scholar 

  • Hieu, N. T., & Lee, B. K. (2010). Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmospheric Research, 98, 526–537.

    CAS  Google Scholar 

  • Hirano, T., Numakura, T., Moriyama, H., Saito, R., Shishikura, Y., Shiihara, J., et al. (2018). The first case of multiple pulmonary granulomas with amyloid deposition in a dental technician; a rare manifestation as an occupational lung disease. BMC Pulmonary Medicine, 18, 77. https://doi.org/10.1186/s12890-018-0654-0.

    Article  CAS  Google Scholar 

  • Hu, S. W., Lin, Y. Y., Wu, T. C., Hong, C. C., Chan, C. C., & Lung, S. C. C. (2006). Workplace air quality and lung function among dental laboratory technicians. American Journal of Industrial Medicine, 49, 85–92.

    CAS  Google Scholar 

  • Huang, H., Lee, S. C., Cao, J. J., Zou, C. W., Chen, X. G., & Fan, S. J. (2007). Characteristics of indoor/outdoor PM2.5 and elemental components in generic urban, roadside and industrial plant areas of Guangzhou City, China. Journal of Environmental Sciences, 19, 35–43.

    CAS  Google Scholar 

  • IARC. (2019). International Agency for Recearch on Cancer. https://www.iarc.fr/wp-content/uploads/2019/06/WCR_Section-Opening-Pages.pdf. Accessed 10 September 2020

  • Ikemura, K., Kojıma, K., Endo, T., & Kadoma, Y. (2011). Synthesis of novel acryloyloxyalkyl and methacryloyloxyalkyl 6,8-dithiooctanoates and evaluation of their bonding performances to precious metals and alloys. Dental Materials Journal, 30(6), 827–836.

    CAS  Google Scholar 

  • Imamura, T., Kanno, Z., Imai, H., Sugiyama, T., Wada, T., Yoshida, T., et al. (2015). Infiltration of trace metal ions in the oral mucosa of a rat analyzed using SRXRF, XAFS, and ICP-MS. Dental Materials Journal, 34(6), 814–821.

    CAS  Google Scholar 

  • Ishikawa, S., Ishikawa, H., Shindo, T., Yoshida, T., Shimoyama, Y., Satomia, T., et al. (2013). Effects of occupational environmental controls and work management on chromosomal damage in dental technicians in Japan. International Journal of Hygiene and Environmental Health, 216, 100–107.

    CAS  Google Scholar 

  • Kettelarji, J. A. B., Nilsson, S., Midander, K., Liden, C., & Julander, A. (2016). Snopshot of cobalt, chromium and nickel exposure in dental technicians. Contact Dermatitis, 75, 370–376.

    Google Scholar 

  • Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M., et al. (2016). Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment. Atmospheric Chemistry and Physics, 16, 597–617.

    CAS  Google Scholar 

  • Khare, P., & Baruah, B. P. (2010). Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of north-east India. Atmospheric Research, 98, 148–162.

    CAS  Google Scholar 

  • Kim, H. A., Heo, Y., Park, Y., Park, C. Y., & Roh, Y. M. (2002). Level of silica in the respirable dust inhaled by dental technicians with demonstration of respirable symptoms. Industrial Health, 40, 260–265.

    CAS  Google Scholar 

  • Kuehn, B. (2018). Dentists at risk of lung disease? JAMA, 319(16), 1650–1655.

    Google Scholar 

  • Lang, A., Ovsenik, M., Verdenik, I., Remškar, M., & Oblak, C. (2018). Nanoparticle concentrations and composition in a dental office and dental laboratory: A pilot study on the influence of working procedures. Journal of Occupational and Environmental Hygiene, 15(5), 441–447.

    CAS  Google Scholar 

  • Lee, J. Y., Yoo, J. M., Cho, B. K., & Kim, H. O. (2001). Contact dermatitis in Korean dental technicians. Contact Dermatitis, 45, 13–16.

    CAS  Google Scholar 

  • Li, C. S. (1994). Elemental composition of residential indoor PM10 in the urban of Taipei. Atmospheric Environment, 28, 3139–3144.

    CAS  Google Scholar 

  • Lim, J.-M., Jeong, J.-H., Lee, J.-H., Moon, J.-H., Chung, Y.-S., & Kim, K.-H. (2011). The analysis of PM2.5 and associated elements and their indoor/outdoor pollution status in an urban area. Indoor Air, 21, 145–155.

    CAS  Google Scholar 

  • Loska, K., Cebula, J., Pelczar, J., Wiechuła, D., & Kwapulinski, J. (1997). Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik Water Reservoir in Poland. Water, Air, and Soil Pollution, 93, 347–365.

    CAS  Google Scholar 

  • Loska, K., Wiechuła, D., Barska, B., Cebula, E., & Chojnecka, A. (2003). Assessment of arsenic enrichment of cultivated soils in southern Poland. Polish Journal of Environmental Studies, 12(2), 187–192.

    CAS  Google Scholar 

  • Loska, K., Wiechuła, D., & Pelczar, J. (2005). Application of enrichment factor to assessment of zinc enrichment/depletion in farming soils. Communications in Soil Science and Plant Analysis, 36, 1117–1128.

    CAS  Google Scholar 

  • Malhotra, P., Sarkar, P. K., & Sriram, P. S. (2013). An 84-year-old man with acute dyspnea and chronic radiographic findings. Chest., 144, 1076–1079.

    Google Scholar 

  • Mason, B. J. (1966). Introduction to geochemistry (3th ed.). New York: Wiley.

    Google Scholar 

  • Mensi, C., Ciullo, F., Barbieri, G. P., Riboldi, L., Somigliana, A., Rasperini, G., et al. (2017). Pleural malignant mesothelioma in dental laboratory technicians: A case series. American Journal of Industrial Medicine, 60, 443–448.

    Google Scholar 

  • MOLSS Report, The Ministry of Labor and Social Security. (2013). Programmed inspection result report targeting the prevention of technicians working in dental prosthesis laboratories for pneumoconiosis and other occupational diseases, improving occupational health and safety conditions of laboratories. (in Turkish). https://ailevecalisma.gov.tr/medias/6018/2013_59.pdf. Accessed 12 September 2020

  • Mutlu-Sagesen, L., Ergun, G., & Karabulut, E. (2011). Ion release from metal-ceramic alloys in three different media. Dental Materials Journal, 30(5), 598–610.

    CAS  Google Scholar 

  • Nakamura, K., Yamada, Y., Takada, Y., Mokudai, T., Ikai, H., Inagaki, R., et al. (2012). Corrosive effect of disinfection solution containing hydroxyl radicals generated by photolysis of H2O2 on dental metals. Dental Materials Journal, 31(6), 941–946.

    CAS  Google Scholar 

  • Nayebzadeh, A., Dufresne, A., Harvie, S., & Begin, R. (1999). Minerology of lung tissue in dental technicians’ pneumoconiosis. American Industrial Hygiene Association Journal, 60(3), 349–353.

    CAS  Google Scholar 

  • Nett, R., Cummings, K. J., Cannon, B., Cox-Ganser, J., & Nathan, S. D. (2018). Dental personnel treated for idiopathic pulmonary fibrosis at a Tertiary Care Center — Virginia, 2000–2015. MMWR. Morbidity and Mortality Weekly Report, 67(9), 270–273.

    Google Scholar 

  • NIOSH. (2019). National Instute of Occupational Safety and Health https://www.cdc.gov/niosh/npg/npgd0088.html. Accessed 12 September 2020.

  • NRC (National Research Council). (1983). Risk assessment in the Federal Government: managing the process. Washington: National Academy Press.

    Google Scholar 

  • Okamoto, M., Tominaga, M., Shimizu, S., Yano, C., Masuda, K., Nakamura, M., et al. (2017). Dental technicians’ pneumoconiosis. Internal Medicine, 56, 3323–3326.

    Google Scholar 

  • Park, E. J., Kim, D. S., & Park, K. (2008). Monitoring and ambient particles and heavy metals in a residential area of Seoul, Korea. Environmental Monitoring and Assessment, 137, 441–449.

    CAS  Google Scholar 

  • Parks, C. G., Conrad, G., & Cooper, G. S. (1999). Occupational exposure to crystalline silica and autoimmune disease. Environmental Health Perspectives, 107(5), 793–802.

    Google Scholar 

  • Pekey, H. (2006). The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin, 52, 1197–1208.

    CAS  Google Scholar 

  • Pjetursson, B. E., Sailer, I., Makarov, N. A., Zwahlen, M., & Thoma, D. S. (2015). All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs. Dental Materials Journal, 31, 624–639.

    CAS  Google Scholar 

  • Raap, U., Stiesch, M., & Kapp, A. (2012). Contact allergy to dental materials. JDDG, 10, 391–396.

    Google Scholar 

  • Renwick, C., Donaldson, K., & Clouter, A. (2011). Impairment of alveolar macrophage phagocytosis by ultrafine particle. Toxicology and Applied Pharmacology, 172, 119–127.

    Google Scholar 

  • Sahu, D., Kannan, G., & Vijayaraghavan, R. (2014). Carbon black particle exhibits size dependent toxicity in human monocytes. Journal of Inflammation, 2014, 827019, 10. https://doi.org/10.1155/2014/827019.

    Article  CAS  Google Scholar 

  • Schmalz, G., Hickel, R., van Landuyt, K. L., & Reichl, F. X. (2017). Nanoparticles in dentistry. Dental Materials, 33, 1298–1314.

    CAS  Google Scholar 

  • See, S. W., & Balasubramanian, R. (2008). Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment, 42, 8852–8862.

    CAS  Google Scholar 

  • Selden, A., Persson, B., Bornberger-Dankvardt, S. I., Winstrom, L. E., & Bodin, L. S. (1995). Exposure to cobalt chromium dust and lung disorders in dental technicians. Thorax., 50, 769–772.

    CAS  Google Scholar 

  • Selden, A., Sahle, W., Johansson, L., Sorenson, S., & Persson, B. (1996). Three cases of dental technician’s pneumoconiosis related to cobalt-chromium-molybdenum dust exposure. Chest, 109, 837–842.

    CAS  Google Scholar 

  • Shridhar, V., Khillare, P. S., Agarwal, T., & Ray, S. (2010). Metallic species in ambient particulate matter at rural and urban location of Delhi. Journal of Hazardous Materials, 175, 600–607.

    CAS  Google Scholar 

  • Tadin, A., Gavic, L., Jurkovic, I., Vidovic, N., Jerkovic, D., & Zeljezic, D. (2019). Cytogenetic Biomonitoring of Dental Technicians: A Cross-Sectional Study. Journal of Prosthodontics, 28, 116–122.

    Google Scholar 

  • Tinkov, A. A., Filippini, T., Olga, P., Ajsuvakova, O. P., Skalnaya, M. G., Aaseth, J., et al. (2018). Cadmium and atherosclerosis: A review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environmental Research, 62, 240–260.

    Google Scholar 

  • TSI Turkish Statistical Institute. (2017) http://www.tuik.gov.tr/HbPrint.do?id=24640&utm_campaign=DonanimHaber&utm_medium=referral&utm_source=DonanimHaber. Accessed 12 September 2020.

  • United States Environmental Protection Agency (US EPA). (1989). Risk Assessment Guidance for Superfund, 1, EPA/540/1-89/002, 19-21.

  • United States Environmental Protection Agency (US EPA). (2005). Guidelines for carcinogen risk assessment. Risk assessment Forum. https://www3.epa.gov/airtoxics/cancer_guidelines_final_3-25-05.pdf. Accessed 24 Sept 2020.

  • United States Environmental Protection Agency (US EPA). (2009a). Risk assessment guidance for Superfund: volume I—human health evaluation manual (part F, supplemental guidance for in-halation risk assessment).

  • United States Environmental Protection Agency (US EPA) (2009b). Integrated Risk Information System (IRIS). http://www.epa.gov/iris/index.html. Accessed 12 September 2020.

  • US EPA United States Environmental Protection Agency. (1998). Risk assessment guidance for Superfund: volume I—human health evaluation manual (Part D). Washington DC.

  • Van Landuyt, K. L., Yoshihara, K., Geebelen, B., Peumans, M., Godderis, L., Hoet, P., et al. (2012). Should we be concerned about composite (nano-) dust? Dental Materials, 28(11), 1162–1170.

    Google Scholar 

  • Voutsa, D., Anthemidis, A., Giakisikli, G., Mitani, K., Besis, A., Tsolakidou, A., et al. (2015). Size distribution of total and water-soluble fractions of particle-bound elements-assessment of possible risks via inhalation. Environmental Science and Pollution Research, 22, 13412–13426.

    CAS  Google Scholar 

  • Wataha, J. C. (2000). Biocompatibility of dental casting alloys: A review. The Journal of Prosthetic Dentistry, 83, 223–234.

    CAS  Google Scholar 

  • WHO World Health Organization. (2014). World Cancer Report (pp. 134–143). Geneva: WHO Press, Switzerland.

  • Yenisoy-Karakas, S., Gaga, E. O., Cankur, O., & Karakas, D. (2009). Uncertainty of high resolution inductively coupled plasma mass spectrometrybased aerosol measurements. Talanta., 79, 1298–1305.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Occupational Health and Safety Research and Development Institute, Kocaeli Regional Laboratory Directorate, for their valuable support. The authors also wish to thank Professor İrfan Yolcubal for the help with the analyses were conducted at the ICP-MS laboratory at Kocaeli University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serap Arsal Yıldırım.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsal Yıldırım, S., Pekey, B. & Pekey, H. Assessment of occupational exposure to fine particulate matter in dental prosthesis laboratories in Kocaeli, Turkey. Environ Monit Assess 192, 667 (2020). https://doi.org/10.1007/s10661-020-08620-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08620-8

Keywords

Navigation