Skip to main content

Advertisement

Log in

Using SPEI in predicting water table dynamics in Argentinian plains

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Response time of the water table (WT) to rainfall is a relevant parameter for optimal management of water resources in plains. This study explores the response time of WT to climatological variability. WT dynamics were analyzed for a period of 10 years in 7 stations located in the Argentinean Pampean Region: Laboulaye (LAB), Arias, General Pico (GP), Azul, Dolores (DOL), Junín and Barrow. Statistical standard methods were applied on WT data series provided by the National Meteorological Service (in Spanish, SMN) and La Pampa province government. Standardized Precipitation and Evapotranspiration Index (SPEI) was applied in multiple temporal scales. Modeled SPEI data were correlated to WT and water table depth (WTD; in situ data) using the Pearson method. Results indicated that WTD response time is spatially variable in the study region when considering the rainfall and evapotranspiration balance (represented by the temporal behavior of the SPEI). These results allowed for the definition of a second-degree–function theoretical method of WTD that explains its variations for different extreme conditions. Multivariate statistical analysis was used to analyze the similarities of WTD evolution among the 5 stations for the 1986–1990 period. Highest statistical connections were found between GP and LAB, GP and DOL and between DOL and LAB stations, which indicated similarities in their dynamic and the maximum (WTD ~ 3.3 m) and mean (WTD ~ 2 m) WTD values measured during the studied period. Surface water coverage data, obtained through digital processing of satellite images of high spatial resolution, validates the relations between climatological variables and WTD showing increases (km2) during the periods in which the WTD was lowest and vice versa. The method presented in this investigation allows the use of SPEI to the prediction of WTD in zones, where it is difficult to measure it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aliaga VS, Ferrelli F, Piccolo MC (2017) Regionalization of climate over the Argentine Pampas. Int J Climatol 37(Suppl. 1):1237–1247. https://doi.org/10.1002/joc.5079

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56

  • Auge MP, Wetten C, Baudino G, Bonorino AG, Gianni R et al (2006) Hidrogeología de Argentina. Boletín Geológico y Minero 117(1):7–23

    Google Scholar 

  • Baigún CR, Delfino R (2003) Sobre ferrocarriles, lagunas y lluvias: características de las pesquerías comerciales de pejerrey en la cuenca del Río Salado (provincia de Buenos Aires). Biol Acuát 20:12–18

    Google Scholar 

  • Bohn VY, Delgado AL, Piccolo MC, Perillo GME (2016) Assessment of climate variability and land use effect on shallow lakes in temperate plains of Argentina. Environ Earth Sci 75:818

    Article  Google Scholar 

  • Brendel A, Bohn VY, Piccolo MC (2017) Variabilidad de la precipitación y su relación con los rendimientos agrícolas en una región semiárida de la llanura pampeana (Argentina). Estudios Geográficos 78(282):7–29

    Article  Google Scholar 

  • Canziani G, Ferrati R, Marinelli C, Dukatz F (2008) Artificial neural networks and remote sensing in the analysis of the highly variable Pampean shallow lakes. Math Biosci Eng 5:691–711

    Article  Google Scholar 

  • Carmona F, Holzman M, Rivas R, Degano MF, Kruse E, Bayala M (2018) Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES. Revista de Teledetección Asociación Española de Teledetección 51:87–98

    Article  Google Scholar 

  • Casado A, Campo AM (2019) Extremos hidroclimáticos y recursos hídricos. Cuadernos Geográficos 58(1):6–26

    Article  Google Scholar 

  • Deb P, Kiem AS, Willgoose G (2019a) Mechanisms influencing non-stationarity in rainfall-runoff relationships in southeast Australia. J Hydrol 571:749–764. https://doi.org/10.1016/j.jhydrol.2019.02.025

    Article  Google Scholar 

  • Deb P, Kiem AS, Willgoose G (2019b) A linked surface water-groundwater modelling approach to more realistically simulate rainfall-runoff non-stationarity in semi-arid regions. J Hydrol 575:273–291. https://doi.org/10.1016/j.jhydrol.2019.05.039

    Article  Google Scholar 

  • Diovisalvi N, Berasain G, Unrein F, Colautti D, Fermani P, Llames ME, Torremorell AM, Lagomarsino L, Pérez G, Escaray R, Bustingorry J, Ferraro M, Zagarese HE (2010) Chascomús: estructura y funcionamiento de una laguna pampeana turbia. Ecol Austral 20:115–127

    Google Scholar 

  • Falasca S, Forte Lay J (2003) Cambio en la evapotranspiración potencial de la pradera pampeana (República Argentina) inducida para un período húmedo. Rev Geogr 134:125–162

    Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodríguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. https://doi.org/10.1029/2005rg000183

    Article  Google Scholar 

  • Ferreira G, Marizza M, Rodríguez L (2012) Utilización de información procedente de teledetección para el análisis de sistemas subterráneos. Aqua-LAC 4(1):9–18

    Google Scholar 

  • García PE, Menéndez AN, Podestá G, Bert F, Arora P, Jobbágy E (2018) Land use as possible strategy for managing water table depth in flat basins with shallow groundwater. Int J River Basin Manag 16(1):79–92

    Article  Google Scholar 

  • Hauke J, Kossowski T (2011) Comparison of values of Pearson’s and Spearman’s correlation coefficient on the same sets of data. Quaest Geogr 30(2):87–93

    Article  Google Scholar 

  • Instituto Nacional de Tecnología Agropecuaria (INTA) (1989) Mapa de suelos de la provincia de Buenos Aires, escala 1:500000. Secretaría de Agricultura, Ganadería y Pesca, INTA, CIRN-Instituto de Evaluación de Tierras. INTA, Buenos Aires

  • Johnson AI (1967) Specific yield—compilation of specific yields for various materials. USGS Water-Supply Paper, 1662-A

  • Kellner E, Hubbart JA (2018) Land use impacts on floodplain water table response to precipitation events. Ecohydrology 11(1):1–10

    Article  Google Scholar 

  • Kovacs G (1983) General principles of flat-land hydrology. Hydrology on Large Flatlands. In: Proceedings of the Olavarría symposium, PHI, UNESCO, vol 1, pp 297–355

  • Kruse E, Ainchil J (2017) Comportamiento hidrológico en grandes llanuras: caso de estudio Noroeste de la Provincia de Buenos Aires, Argentina. Augmdomus, pp 1–11

  • Kuppel S, Houspanossian J, Nosetto MD, Jobbágy EG (2015) What does it take to flood the ampas?: lessons from a decade of strong hydrological fluctuations. Water Resour Res 51(4):2937–2950

    Article  Google Scholar 

  • Leduc C, Pulido A, Remini B (2017) Anthropization of groundwater resources in the Mediterranean region: processes and challenges. Hydrogeol J 25:1529–1547

    Article  Google Scholar 

  • Marengo JA, Espinoza JC (2015) Extreme seasonal droughts and floods in amazonia: causes, trends and impacts. Int J Climatol 36:1033–1050

    Article  Google Scholar 

  • Matteucci SD (2018) Ecorregión Pampa. In: Morello J, Matteucci SD, Rodríguez AF, Silva M (comp) Ecorregiones y complejos ecosistémicos argentinos, 2da. Edición, Editorial Orientación Gráfica Argentina, Buenos Aires, pp 391–445

  • Mercau JL, Nosetto MD, Bert F, Giménez R, Jobbágy EG (2016) Shallow groundwater dynamics in the Pampas: climate, landscape and crop choice effects. Agric Water Manag 163(1):159–168

    Article  Google Scholar 

  • Noor SR, Zulkifli Y, Muhammad S, Zulhilmi I (2018) Flood risk assessment: a review of flood damage estimation model for Malaysia. Jurnal Teknologi (Sci Eng) 80(3):145–153

    Google Scholar 

  • Nosetto MD, Jobbágy EG, Jackson RB, Sznaidere GA (2009) Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Res 113(2):138–148

    Article  Google Scholar 

  • Pereyra FX (2018) Geomorfología de la Provincia de Buenos Aires. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Serie Contribuciones Técnicas—Ordenamiento territorial No 9 Buenos Aires

  • Quirós R, Rennella A, Boveri M, Rosso JJ, Sosnovsky A (2002) Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecol Austral 12:175–185

    Google Scholar 

  • Quiróz Londoño OM, Martínez DE, Massone H (2012) Evaluación comparativa de métodos de cálculo de recarga en ambientes de llanura. La llanura interserrana bonaerense (Argentina), como caso de estudio. Dyna 79(171):239–247

    Google Scholar 

  • Rogerson PA (2011) Optimal geographic scales for local spatial statistics. Stat Methods Med Res 20(2):119–129

    Article  Google Scholar 

  • Sadeghi-Bagherabadi S, Rezaei A, Jalili S (2016) Time-lag responses of groundwater to precipitation in Zanjan Plain. In: 2nd international geosciences congress, Tehran, Iran

  • Sala JM (1975) Recursos Hídricos. Especial Mención de las Aguas Subterráneas. In: Relatorio Geología de la Provincia de Buenos Aires, pp 169–193. VI Congreso Geológico Argentino. Bahía Blanca

  • Scarpati OE, Spescha LB, Forte Lay JA, Capriolo AD (2011) Soil water surplus in Salado river basin and its variability during the last forty years (Buenos Aires Province, Argentina). Water 3:132–145

    Article  Google Scholar 

  • Srivastava A, Deb P, Kumari N (2019) Multi-model approach to assess the dynamics of hydrologic components in a tropical ecosystem. Water Resour Manag. https://doi.org/10.1007/s11269-019-02452-z

    Article  Google Scholar 

  • Te Chow V (2009) Open channel hydraulics. McGraw-Hill, New York

    Google Scholar 

  • Torremorell A, Bustigorry J, Escaray R, Zagarese HE (2007) Seasonal dynamics of a large, shallow lake, laguna Chascomús: the role of light limitation and other physical variables. Limnologica 37:100–108

    Article  Google Scholar 

  • Usunoff E, Varni M, Weinzettel P, Rivas R (1999) Hidrogeología de grandes llanuras: la pampa húmeda argentina. Bol Geol Min 110(4):47–62

    Google Scholar 

  • Varni M, Rivas R, Entraigas I (2003) Interacción de un cuerpo de agua superficial con el agua subterránea en la llanura pampeana, Argentina. Inf Tecnol 14:6

    Google Scholar 

  • Vicente Serrano S, Beguería S, López Moreno J (2010) Multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718

    Article  Google Scholar 

  • Viglizzo E, Carreño L, Volante JN, Mosciaro MJ (2011) Valuación de los Bienes y Servicios Ecosistémicos: Verdad objetiva o cuento de la buena pipa? In: Laterra P, Jobbágy E, Paruelo J (eds) Valoración de Servicios Ecosistémicos, Conceptos, herramientas y aplicaciones para el ordenamiento territorial. Ediciones INTA, Buenos Aires, pp 17–38

    Google Scholar 

  • Zárate MA (2005) El Cenozoico tardío continental de la provincia de Buenos Aires. In: de Barrio R, Etcheverry R, Caballé MF, Llambías E (eds) Relatorio del XVI Congreso Geológico Argentino. Geología y Recursos Minerales de la Provincia de Buenos Aires La Plata, pp 139–158

  • Zárate MA, Rabassa J (2005) Geomorfología de la Provincia de Buenos Aires In: de Barrio R, Etcheverry R, Caballé MF, Llambías E (eds) Relatorio del XVI Congreso Geológico Argentino. Geología y Recursos Minerales de la Provincia de Buenos Aires La Plata, pp 119–138

  • Zárate MA, Tripaldi A (2012) The aeolian system of central Argentina. Aeol Res 3:401–417

    Article  Google Scholar 

  • Zhang Q, Gu X, Singh VP, Kong D, Chen X (2015) Spatiotemporal behavior of floods and droughts and their impacts on agriculture in China. Glob Planet Change 131:63–72

    Article  Google Scholar 

  • Zipper SC, Soylu ME, Booth EG, Loheide SP (2015) Untangling the effects of shallow groundwater and soil texture as drivers of subfield-scale yield variability. Water Resour Res 51:6338–6358

    Article  Google Scholar 

Download references

Acknowledgements

Authors want to thank to Administración del Agua de la provincia de La Pampa (La Pampa province goverment), Servicio Meteorológico Nacional (in Spanish, SMN), Instituto de Hidrología de Llanuras (in Spanish, IHLLA), Secretaría de Infraestructura y Política Hídrica de la Nación ( SIPHN), Instituto Geográfico Nacional de la República Argentina (in Spanish, IGN), Instituto Nacional de Tecnología Agropecuaria (INTA) and the United States Geological Survey (USGS) for the data provided. In addition, the author’s thanks to the institutions of Consejo Nacional de Investigaciones Científicas y Técnicas (in Spanish, CONICET), Universidad Nacional del Sur (in Spanish, UNS) (Grant no. 24/G084) and Comisión de Investigaciones Científicas de la provincia de Buenos Aires (in Spanish, CIC). Special thanks to Lic. Christian Mancino (IHLLA) for the advice provided in the elaboration of the lithological profile. This research is carried out within the framework of research projects “Integrated study of Pampean shallow lakes” and “Hydrological vulnerability and environmental problems in hydrographic basins of plains (Argentina)”, both supported by UNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanesa Y. Bohn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohn, V.Y., Rivas, R., Varni, M. et al. Using SPEI in predicting water table dynamics in Argentinian plains. Environ Earth Sci 79, 469 (2020). https://doi.org/10.1007/s12665-020-09210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09210-0

Keywords

Navigation