Skip to main content
Log in

Strategy for the Complete Conversion of Thermally Grown PbI2 Layers in Inverted Perovskite Solar Cells

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We suggest a combination of morphological control and the introduction of an additive as a strategy to completely convert thermally grown a PbI2 layer into the perovskite structure for inverted organic–inorganic hybrid perovskite solar cells (PSCs). For 2-step PSCs based on thermal evaporation, the complete conversion of PbI2 into the perovskite structure is a key parameter for device performance. To achieve complete conversion, we regulated the morphology of the PbI2 layer by controlling the growth rate. Compared to rapidly grown PbI2 layers, a PbI2 layer grown at a slow rate contained pinholes that enhanced the diffusion of methyl ammonium iodide (MAI) from the PbI2 surface. Despite the assistance of the pinholes, the conversion of the PbI2 was incomplete due to the limited interaction between the MAI and PbI2. Complete conversion of the pinhole-rich PbI2 occurred by introducing an additive into the MAI solution. The conversion of PbI2 was measured by grazing-incidence wide-angle X-ray scattering using synchrotron X-rays. By controlling the incidence angle of the X-rays, we quantitatively compared the amount of PbI2 as a function of the X-ray penetration depth. Using a completely converted 50 nm-thick PbI2 layer, we obtained a power conversion efficiency of 9.44%.

Graphic Absract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De Wolf, S., Holovsky, J., Moon, S.J., Loper, P., Niesen, B., Ledinsky, M., Haug, F.J., Yum, J.H., Ballif, C.: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014)

    Article  Google Scholar 

  2. Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., Meredith, P.: Electro-optics of perovskite solar cells. Nat. Photonics 9(2), 106–112 (2014)

    Article  Google Scholar 

  3. Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)

    Article  CAS  Google Scholar 

  4. Yin, W.-J., Yang, J.-H., Kang, J., Yan, Y., Wei, S.-H.: Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3(17), 8926–8942 (2015)

    Article  CAS  Google Scholar 

  5. Kim, Y.H., Cho, H., Lee, T.W.: Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. 113(42), 11694–11702 (2016)

    Article  CAS  Google Scholar 

  6. Veldhuis, S.A., Boix, P.P., Yantara, N., Li, M., Sum, T.C., Mathews, N., Mhaisalkar, S.G.: Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28(32), 6804–6834 (2016)

    Article  CAS  Google Scholar 

  7. Jo, J.W., Yoo, Y., Jeong, T., Ahn, S., Ko, M.J.: Low-temperature processable charge transporting materials for the flexible perovskite solar cells. Electron. Mater. Lett. 14(6), 657–668 (2018). https://doi.org/10.1007/s13391-018-0073-7

    Article  CAS  Google Scholar 

  8. Gil, B., Yun, A.J., Lee, Y., Kim, J., Lee, B., Park, B.: Recent progress in inorganic hole transport materials for efficient and stable perovskite solar cells. Electron. Mater. Lett. 15(5), 505–524 (2019). https://doi.org/10.1007/s13391-019-00163-6

    Article  CAS  Google Scholar 

  9. NREL. Efciency chart. https://www.nrel.gov/pv/cell-efficiency.html

  10. Song, Z., Watthage, S.C., Phillips, A.B., Heben, M.J.: Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photonics Energy 6(2), 022001 (2016)

    Article  Google Scholar 

  11. Song, T.-B., Chen, Q., Zhou, H., Jiang, C., Wang, H.-H., Yang, Y., Liu, Y., You, J., Yang, Y.: Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3(17), 9032–9050 (2015)

    Article  CAS  Google Scholar 

  12. Lal, N.N., Dkhissi, Y., Li, W., Hou, Q., Cheng, Y.-B., Bach, U.: Perovskite Tandem Solar Cells. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201602761

    Article  Google Scholar 

  13. Cui, P., Wei, D., Ji, J., Huang, H., Jia, E., Dou, S., Wang, T., Wang, W., Li, M.: Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 4(2), 150–159 (2019)

    Article  CAS  Google Scholar 

  14. Wang, L., McCleese, C., Kovalsky, A., Zhao, Y., Burda, C.: Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136(35), 12205–12208 (2014)

    Article  CAS  Google Scholar 

  15. Cao, D.H., Stoumpos, C.C., Malliakas, C.D., Katz, M.J., Farha, O.K., Hupp, J.T., Kanatzidis, M.G.: Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells? APL Mater. (2014). https://doi.org/10.1063/1.4895038

    Article  Google Scholar 

  16. Shi, B., Yao, X., Hou, F., Guo, S., Li, Y., Wei, C., Ding, Y., Li, Y., Zhao, Y., Zhang, X.: Unraveling the passivation process of PbI2 to enhance the efficiency of planar perovskite solar cells. J. Phys. Chem. C 122(37), 21269–21276 (2018)

    Article  CAS  Google Scholar 

  17. Lai, W.-C., Hsieh, W.-M., Yu, H.-C., Yang, S.-H., Guo, T.-F., Chen, P.: Conversion efficiency enhancement of methyl ammonium lead triiodide perovskite solar cells converted from thermally deposited lead iodide via thin methyl ammonium iodide interlayer. Org. Electron (2020). https://doi.org/10.1016/j.orgel.2020.105713

    Article  Google Scholar 

  18. Liu, A., Liu, K., Zhou, H., Li, H., Qiu, X., Yang, Y., Liu, M.: Solution evaporation processed high quality perovskite films. Sci. Bull. 63(23), 1591–1596 (2018)

    Article  CAS  Google Scholar 

  19. Fu, Y., Meng, F., Rowley, M.B., Thompson, B.J., Shearer, M.J., Ma, D., Hamers, R.J., Wright, J.C., Jin, S.: Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc. 137(17), 5810–5818 (2015)

    Article  CAS  Google Scholar 

  20. Tu, Y., Wu, J., He, X., Guo, P., Wu, T., Luo, H., Liu, Q., Wang, K., Lin, J., Huang, M., Huang, Y., Lan, Z., Li, S.: Solvent engineering for forming stonehenge-like PbI2nano-structures towards efficient perovskite solar cells. J. Mater. Chem. A 5(9), 4376–4383 (2017)

    Article  CAS  Google Scholar 

  21. Li, Y., Ding, B., Yang, G.-J., Li, C.-J., Li, C.-X.: Achieving the high phase purity of CH3NH3PbI3 film by two-step solution processable crystal engineering. J. Mater. Sci. Technol. 34(8), 1405–1411 (2018)

    Article  Google Scholar 

  22. Kim, S.-Y., Jo, H.J., Sung, S.-J., Kim, D.-H.: Perspective: understanding of ripening growth model for minimum residual PbI2 and its limitation in the planar perovskite solar cells. APL Mater. 4(10), 100901 (2016)

    Article  Google Scholar 

  23. Fu, F., Kranz, L., Yoon, S., Löckinger, J., Jäger, T., Perrenoud, J., Feurer, T., Gretener, C., Buecheler, S., Tiwari, A.N.: Controlled growth of PbI2 nanoplates for rapid preparation of CH3NH3PbI3 in planar perovskite solar cells. Phys. Stat. Solidi (a) 212(12), 2708–2717 (2015)

    Article  CAS  Google Scholar 

  24. Ahn, N., Son, D.Y., Jang, I.H., Kang, S.M., Choi, M., Park, N.G.: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) Iodide. J. Am. Chem. Soc. 137(27), 8696–8699 (2015)

    Article  CAS  Google Scholar 

  25. Birkholz, M.: Thin film analysis by X-ray scattering. WILEY-VCH, Weinheim (2006)

    Google Scholar 

  26. Index of refraction https://henke.lbl.gov/optical_constants/getdb2.html

  27. Gujar, T.P., Unger, T., Schonleber, A., Fried, M., Panzer, F., van Smaalen, S., Kohler, A., Thelakkat, M.: The role of PbI2 in CH3NH3PbI3 perovskite stability, solar cell parameters and device degradation. Phys. Chem. Chem. Phys. 20(1), 605–614 (2017)

    Article  Google Scholar 

  28. Soucase, B.M., Pradas, I.G., Adhikari, K.R.: Numerical simulations on perovskite photovoltaic devices. In: Pan, L., Zhu, G. (eds.) Perovskite materials: synthesis, characterisation, properties, and applications, pp. 445–486. InTech, London (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean Government (NRF-2018R1A2B600517813, NRF-2015R1A5A1009962), the Korea Electric Power Corporation (CX72170050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo Jung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Hong, S., An, S. et al. Strategy for the Complete Conversion of Thermally Grown PbI2 Layers in Inverted Perovskite Solar Cells. Electron. Mater. Lett. 16, 588–594 (2020). https://doi.org/10.1007/s13391-020-00250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00250-z

Keywords

Navigation