Skip to main content

Advertisement

Log in

Changes in Ecosystem Nitrogen and Carbon Allocation with Black Mangrove (Avicennia germinans) Encroachment into Spartina alterniflora Salt Marsh

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Increases in temperature are expected to facilitate encroachment of tropical mangrove forests into temperate salt marshes, yet the effects on ecosystem services are understudied. Our work was conducted along a mangrove expansion front in Louisiana (USA), an area where coastal wetlands are in rapid decline due to compounding factors, including reduced sediment supply, rising sea level, and subsidence. Marsh and mangrove ecosystems are each known for their ability to adjust to sea-level rise and support numerous ecosystem services, but there are some differences in the societal benefits they provide. Here, we compare carbon and nitrogen stocks and relate these findings to the expected effects of mangrove encroachment on nitrogen filtration and carbon sequestration in coastal wetlands. We specifically evaluate the implications of black mangrove (Avicennia germinans) encroachment into Spartina alterniflora-dominated salt marsh. Our results indicate that black mangrove encroachment will lead to increased aboveground carbon and nitrogen stocks. However, we found no differences in belowground (that is, root and sediment) nitrogen or carbon stocks between marshes and mangroves. Thus, the shift from marsh to mangrove may provide decadal-scale increases in aboveground nitrogen and carbon sequestration, but belowground nitrogen and carbon sequestration (that is, carbon burial) may not be affected. We measured lower pore water nitrogen content beneath growing mangroves, which we postulate may be due to greater nitrogen uptake and storage in mangrove aboveground compartments compared to marshes. However, further studies are needed to better characterize the implications of mangrove encroachment on nitrogen cycling, storage, and export to the coastal ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alexander RB, Böhlke JK, Boyer EW, David MB, Harvey JW, Mulholland PJ, Seitzinger SP, Tobias CR, Tonitto C, Wollheim WM. 2009. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry 93:91–116.

    Article  CAS  Google Scholar 

  • Armitage AR, Highfield WE, Brody SD, Louchouarn P. 2015. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast. PloS One 10(5):e0125404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81(2):169–93.

    Article  Google Scholar 

  • Barreto CR, Morrissey EM, Wykoff DD, Chapman SK. 2018. Co-occurring mangroves and salt marshes differ in microbial community composition. Wetlands 38:497–508.

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1):1–48.

    Article  Google Scholar 

  • Bianchi TS, Dimarco SF, Cowan JH Jr, Hetland RD, Chapman P, Day JW, Allison MA. 2010. The science of hypoxia in the Northern Gulf of Mexico: a review. Science of the Total Environment 408:1471–84.

    Article  CAS  PubMed  Google Scholar 

  • Breithaupt JL, Smoak JM, Bianchi TS, Vaughn D, Sanders CJ, Radabaugh KR, Osland MJ, Feher LC, Lynch J, Cahoon DR, Anderson GH, Whelan KRT, Rosenheim BE, Moyer RP, Chambers LG. 2020. Increasing rates of carbon burial in southwest Florida coastal wetlands. Journal of Geophysical Research: Biogeosciences 125:e2019JG005349.

    CAS  Google Scholar 

  • Cavanaugh KC, Dangremond EM, Doughty CL, Williams AP, Parker JD, Hayes MA, Rodriguez W, Feller IC. 2019. Climate-driven regime shifts in a mangrove-salt marsh ecotone over the past 250 years. Proceedings of the National Academy of Sciences of the United States of America 116:21602–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers LG, Steinmuller HE, Breithaupt JL. 2019. Toward a mechanistic understanding of “peat collapse” and its potential contribution to coastal wetland loss. Ecology 100:e02720.

    Article  PubMed  Google Scholar 

  • Charles SP, Kominoski JS, Armitage AR, Guo H, Weaver CA, Pennings SC. 2020. Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands. Ecology. https://doi.org/10.1002/ecy.2916.

    Article  PubMed  Google Scholar 

  • Chipman L, Podgorski D, Green S, Kostka J, Cooper W, Huettel M. 2010. Decomposition of plankton-derived dissolved organic matter in permeable coastal sediments. Limnology and Oceanography 55(2):857–71.

    Article  CAS  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17(4): https://doi.org/10.1029/2002GB001917

  • Couvillion BR, Barras JA, Steyer GD, Sleavin W, Fischer M, Beck H, Trahan N, Griffin B, Heckman D. 2011. Land area change in coastal Louisiana from 1932 to 2010: U.S. Geological Survey Scientific Investigations Map 3164, 12 p. pamphlet.

  • Couvillion BR, Beck H, Schoolmaster D, Fischer M. 2017. Land area change in coastal Louisiana 1932 to 2016: U.S. Geological Survey Scientific Investigations Map 3381, 16 p. pamphlet, https://doi.org/10.3133/sim3381.

  • Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M. 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7(2):73–8.

    Article  Google Scholar 

  • Dan TH, Quang LN, Chiem NH, Brix H. 2011. Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: horizontal subsurface flow versus vertical downflow. Ecological Engineering 37(5):711–20.

    Article  Google Scholar 

  • Dangremond EM, Simpson LT, Osborne TZ, Feller IC. 2019. Nitrogen enrichment accelerates mangrove range expansion in the temperate–tropical ecotone. Ecosystems. https://doi.org/10.1007/s10021-019-00441-2.

    Article  Google Scholar 

  • Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490(7420):388–92.

    Article  CAS  PubMed  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4(5):293–7.

    Article  CAS  Google Scholar 

  • Doughty CL, Cavanaugh KC, Hall CR, Feller IC, Chapman SK. 2017. Impacts of mangrove encroachment and mosquito impoundment management on coastal protection services. Hydrobiologia 803(1):105–20.

    Article  Google Scholar 

  • Doughty CL, Langley JA, Walker WS, Feller IC, Schaub R, Chapman SK. 2015. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts: https://doi.org/10.1007/s12237-015-9993-8.

    Article  Google Scholar 

  • Duke N, Ball M, Ellison J. 1998. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters 7(1):27–47.

    Article  Google Scholar 

  • Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG. 2011. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecology Letters 14:709–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engle VD. 2011. Estimating the provision of ecosystem services by Gulf of Mexico coastal wetlands. Wetlands 31(1):179–93.

    Article  Google Scholar 

  • Feher LC, Osland MJ, Griffith KT, Grace JB, Howard RJ, Stagg CL, Enwright NM, Krauss KW, Gabler CA, Day RH, Rogers K. 2017. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere 8(10):e01956.

    Article  Google Scholar 

  • Feller IC, McKee KL, Whigham DF, O’Neill JP. 2003. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62(2):145–75.

    Article  CAS  Google Scholar 

  • Fox J. 2015. Applied regression analysis and generalized linear models. SAGE Publications.

  • Goolsby DA. 2000. Mississippi Basin nitrogen flux believed to cause Gulf hypoxia. Eos, Transactions American Geophysical Union 81(29):321.

    Article  Google Scholar 

  • Guo H, Weaver C, Charles SP, Whitt A, Dastidar S, D’Odorico P, Fuentes JD, Kominoski JS, Armitage AR, Pennings SC. 2017. Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover. Ecology 98(3):762–72.

    Article  PubMed  Google Scholar 

  • Henry K. 2012. Linking nitrogen biogeochemistry to different stages of wetland soil development in the Mississippi River Delta, Louisiana. Louisiana State University. Dissertation.

  • Hijuelos AC, Dijkstra JT, Carruthers TJB, Heynert K, Reed DJ, van Wesenbeeck BK. 2019. Linking management planning for coastal wetlands to potential future wave attenuation under a range of relative sea-level rise scenarios. PloS One 14(5):e0216695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkinson CS, Cai WJ, Hu X. 2012. Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability 4(2):186–94.

    Article  Google Scholar 

  • Huett DO, Morris SG, Smith G, Hunt N. 2005. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands. Water Research 39(14):3259–72.

    Article  CAS  PubMed  Google Scholar 

  • Jordan SJ, Stoffer J, Nestlerode JA. 2010. Wetlands as sinks for reactive nitrogen at continental and global scales: a meta-analysis. Ecosystems 14(1):144–55.

    Article  CAS  Google Scholar 

  • Kelleway JJ, Cavanaugh K, Rogers K, Feller IC, Ens E, Doughty C, Saintilan N. 2017. Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology 23(10):3967–83.

    Article  PubMed  Google Scholar 

  • Kisand V, Rocker D, Simon M. 2008. Significant decomposition of riverine humic-rich DOC by marine but not estuarine bacteria assessed in sequential chemostat experiments. Aquatic Microbial Ecology: International Journal 53:151–60.

    Article  Google Scholar 

  • Kominoski JS, Gaiser EE, Baer SG. 2018. Advancing theories of ecosystem development through long-term ecological research. Bioscience 68(8):554–62.

    Article  Google Scholar 

  • Lamont K, Saintilan N, Kelleway JJ, Mazumder D, Zawadzki A. 2020. Thirty-year repeat measures of mangrove above- and below-ground biomass reveals unexpectedly high carbon sequestration. Ecosystems. 23:370–82.

    Article  CAS  Google Scholar 

  • Lattanzi FA. 2010. C3/C4 grasslands and climate change. Grassland Science in Europe 3–13: mediatum.ub.tum.de.

  • Lovelock CE. 2008. Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11(2):342–54.

    Article  CAS  Google Scholar 

  • Lovelock CE, Fourqurean JW, Morris JT. 2017. Modeled CO2 emissions from coastal wetland transitions to other land uses: tidal marshes, mangrove forests, and seagrass beds. Frontiers in Marine Science 4:279.

    Article  Google Scholar 

  • Macreadie PI, Nielsen DA, Kelleway JJ, Atwood TB, Seymour JR, Petrou K, Connolly RM, Thomson ACG, Trevathan-Tackett SM, Ralph PJ. 2017. Can we manage coastal ecosystems to sequester more blue carbon? Frontiers in Ecology and the Environment 15(4):206–13.

    Article  Google Scholar 

  • Macy A, Sharma S, Sparks E, Goff J, Heck KL, Johnson MW, Harper P, Cebrian J. 2019. Tropicalization of the barrier islands of the northern Gulf of Mexico: a comparison of herbivory and decomposition rates between smooth cordgrass (Spartina alterniflora) and black mangrove (Avicennia germinans). PloS One 14(1):e0210144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matuschek H, Kliegl R, Vasishth S, Baayen H, Bates D. 2017. Balancing type I error and power in linear mixed models. Journal of Memory and Language 94:305–15.

    Article  Google Scholar 

  • McKee KL, Cahoon DR, Feller IC. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography: A Journal of Macroecology 16(5):545–56.

    Article  Google Scholar 

  • McKee KL, Mendelssohn IA, Hester MW. 2020. Hurricane sedimentation in a subtropical salt marsh-mangrove community is unaffected by vegetation type. Estuarine, Coastal, and Shelf Science 239:106733.

    Article  Google Scholar 

  • McKee KL, Rooth JE. 2008. Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Chang Biology 14:971–84.

    Article  Google Scholar 

  • McKee KL, Vervaeke WC. 2018. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? Global Change Biology 24:1224–38.

    Article  PubMed  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte CM, Lovelock CE, Schlessinger WH, Silliman BR. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9(10):552–60.

    Article  Google Scholar 

  • Mendelssohn IA, McKee KL. 1988. Spartina alterniflora die-back in Louisiana: time-course investigation of soil waterlogging effects. The Journal of Ecology: 509–521.

  • Méndez-Alonzo R, López-Portillo J, Rivera-Monroy VH. 2008. Latitudinal variation in leaf and tree traits of the mangrove Avicennia germinans (Avicenniaceae) in the central region of the Gulf of Mexico. Biotropica 40(4):449–56.

    Article  Google Scholar 

  • Mitsch WJ, Bernal B, Hernandez ME. 2015. Ecosystem services of wetlands. International Journal of Biodiversity Science, Ecosystems Services & Management 11(1):1–4.

    Article  Google Scholar 

  • Moffat AS. 1998. Global nitrogen overload problem grows critical. Science 279(5353):988–9.

    Article  CAS  Google Scholar 

  • Morris JT, Edwards J, Crooks S, Reyes E. 2012. Assessment of carbon sequestration potential in coastal wetlands. Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J, editors. Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle. Dordrecht: Springer Netherlands. 517-531

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. 2002. Responses of coastal wetlands to rising sea level. Ecology 83(10):2869–77.

    Article  Google Scholar 

  • Mozdzer TJ, Kirwan M, McGlathery KJ, Zieman JC. 2011. Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora. Marine Ecology Progress Series 433:43–52.

    Article  CAS  Google Scholar 

  • Neubauer SC, Givler K, Valentine S, Megonigal JP. 2005. Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology 86(12):3334–44.

    Article  Google Scholar 

  • Neubauer SC. 2013. Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuaries Coasts 36:491–507.

    Article  CAS  Google Scholar 

  • Oaks A. 1994. Efficiency of nitrogen utilization in C3 and C4 cereals. Plant Physiology 106(2):407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odum EP. 1969. The strategy of ecosystem development. Science 164(3877):262–70.

    Article  CAS  PubMed  Google Scholar 

  • Osland MJ, Day RH, Hall CT, Brumfield MD, Dugas JL, Jones WR. 2017. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients. Ecology 98(1):125–37.

    Article  PubMed  Google Scholar 

  • Osland MJ, Day RH, Hall CT, Feher LC, Armitage AR, Cebrian J, Dunton KH, Hughes AR, Kaplan DA, Langston AK, Macy A, Weaver CA, Anderson GH, Cummins K, Feller IC, Snyder CM. 2019a. Temperature thresholds for black mangrove (Avicennia germinans) freeze damage, mortality, and recovery in North America: refining tipping points for range expansion in a warming climate. Journal of Ecology: https://doi.org/10.1007/s12237-019-00640-z.

    Article  Google Scholar 

  • Osland MJ, Day RH, Larriviere JC, From AS. 2014. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh Ecotone. PloS One 9(6):1–7.

    Article  CAS  Google Scholar 

  • Osland MJ, Day RH, Michot TC. 2020a. Frequency of extreme freeze events controls the distribution and structure of black mangroves (Avicennia germinans) near their northern range limit in coastal Louisiana. Diversity and Distributions. https://doi.org/10.1111/ddi.13119.

    Article  Google Scholar 

  • Osland MJ, Enwright N, Day RH, Doyle TW. 2013. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Global Change Biology 19(5):1482–94.

    Article  PubMed  Google Scholar 

  • Osland MJ, Feher LC, Spivak AC, Nestlerode JA, Almario AE, Cormier N, From AS, Krauss KW, Russell MJ, Alvarez F, Dantin DD, Harvey JE, Stagg CL. 2020b. Rapid peat development beneath created, maturing mangrove forests: ecosystem changes across a 25-year chronosequence. Ecological Applications 30:e02085.

    Article  PubMed  PubMed Central  Google Scholar 

  • Osland MJ, Gabler CA, Grace JB, Day RH, McCoy ML, McLeod JL, From AS, Enwright NM, Feher LC, Stagg CL, Hartley SB. 2018. Climate and plant controls on soil organic matter in coastal wetlands. Global Change Biology 24(11):5361–79.

    Article  PubMed  Google Scholar 

  • Osland MJ, Grace JB, Guntenspergen GR, Thorne KM, Carr JA, Feher LC. 2019b. Climatic controls on the distribution of foundation plant species in coastal wetlands of the conterminous United States: knowledge gaps and emerging research needs. Estuaries and Coasts: https://doi.org/10.1007/s12237-019-00640-z.

    Article  Google Scholar 

  • Osland MJ, Spivak AC, Nestlerode JA, Lessmann JM, Almario AE, Heitmuller PT, Russell MJ, Krauss KW, Alvarez F, Dantin DD, Harvey JE, From AS, Cormier N, Stagg CL. 2012. Ecosystem development after mangrove wetland creation: plant–soil change across a 20-year chronosequence. Ecosystems 15(5):848–66.

    Article  CAS  Google Scholar 

  • Patterson CS, Mendelssohn IA. 1991. A comparison of physicochemical variables across plant zones in a mangal/salt marsh community in Louisiana. Wetlands 11(1):139–61.

    Article  Google Scholar 

  • Pennock JR, Cowan JLW. 2001. C & N analytical instrumentation methods manual.

  • Perry CL, Mendelssohn IA. 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29(1):396–406.

    Article  Google Scholar 

  • Qing H, Cai Y, Xiao Y, Yao Y, An S. 2012. Leaf nitrogen partition between photosynthesis and structural defense in invasive and native tall form Spartina alterniflora populations: effects of nitrogen treatments. Biological Invasions 14:2039–48.

    Article  Google Scholar 

  • Pérez A, Machado W, Gutierrez D, Stokes D, Sanders L, Smoak JM, Santos I, Sanders CJ. 2017. Changes in organic carbon accumulation driven by mangrove expansion and deforestation in a New Zealand estuary. Estuarine, Coastal and Shelf Science 192:108–16.

    Article  CAS  Google Scholar 

  • R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  • Rabalais NN, Turner RE, Diaz RJ. 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science: Journal Du Conseil: 1528-1536.

  • Rabalais NN, Turner RE, Wiseman WJ Jr. 2001. Hypoxia in the Gulf of Mexico. Journal of Environmental Quality 30:320–9.

    Article  CAS  PubMed  Google Scholar 

  • Rejmankova E. 2011. The role of macrophytes in wetland ecosystems. Journal of Environment and Ecology 34(4):333–45.

    Article  Google Scholar 

  • Rivera-Monroy VH, Branoff B, Meselhe E, McCorquodale A, Dortch M, Steyer GD, Visser J, Wang H. 2013. Landscape-level estimation of nitrogen removal in coastal Louisiana wetlands: potential sinks under different restoration scenarios. Journal of Coastal Research 67:75–87.

    Article  CAS  Google Scholar 

  • Rivera-Monroy VH, Lenaker P, Twilley RR, Delaune RD, Lindau CW, Nuttle W, Habib E, Fulweiler RW, Castañeda-Moya E. 2010. Denitrification in coastal Louisiana: a spatial assessment and research needs. Journal of Sea Research 63:157–72.

    Article  CAS  Google Scholar 

  • Rogers K, Kelleway JJ, Saintilan N, Megonigal JP, Adams JB, Holmquist JR, Lu M, Schile-Beers L, Zawadzki A, Mazumder D. 2019. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567:91.

    Article  CAS  PubMed  Google Scholar 

  • Saeed T, Sun G. 2012. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management 112:429–48.

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Pearcy RW. 1987. The nitrogen use efficiency of C3 and C4 plants: II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology 84:959–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saintilan N, Rogers K. 2015. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings. The New Phytologist 205(3):1062–70.

    Article  PubMed  Google Scholar 

  • Scheffel WA, Heck KL Jr, Rozas LP. 2017. Effect of habitat complexity on predator—prey relationships: implications for black mangrove range expansion into Northern Gulf of Mexico salt marshes. Journal of Shellfish Research 36(1):181–8.

    Article  Google Scholar 

  • Shepard AN, Valentine JF, D’Elia CF, Yoskowitz DW, Dismukes DE. 2013. Economic impact of Gulf of Mexico ecosystem goods and services and integration into restoration decision-making. Gulf of Mexico Science 31(1–2):10–27.

    Google Scholar 

  • Simpson LT, Feller IC, Chapman SK. 2013. Effects of competition and nutrient enrichment on Avicennia germinans in the salt marsh-mangrove ecotone. Aquatic Botany 104:55–9.

    Article  Google Scholar 

  • Simpson LT, Osborne TZ, Duckett LJ, Feller IC. 2017. Carbon storages along a climate induced coastal wetland gradient. Wetlands 37:1023–35.

    Article  Google Scholar 

  • Simpson LT, Stein CM, Osborne TZ, Feller IC. 2019. Mangroves dramatically increase carbon storage after 3 years of encroachment. Hydrobiologia 834:13–26.

    Article  Google Scholar 

  • Steinmuller HE, Foster TE, Boudreau P, Ross Hinkle C, Chambers LG. 2019. Tipping points in the mangrove March: characterization of biogeochemical cycling along the mangrove–salt marsh ecotone. Ecosystems. https://doi.org/10.1007/s10021-019-00411-8.

    Article  Google Scholar 

  • Smee DL, Sanchez JA, Diskin M, Trettin C. 2017. Mangrove expansion into salt marshes alters associated faunal communities. Estuarine, Coastal and Shelf Science 187:306–13.

    Article  Google Scholar 

  • USGCRP. 2017. Climate science special report: Fourth national climate assessment, Vol. IWashington, DC, USA: U.S. Global Change Research Program.

    Google Scholar 

  • Vaughn DR, Bianchi TS, Shields MR, Kenney WF, Osborne TZ. 2020. Increased organic carbon burial in northern Florida mangrove-salt marsh transition zones. Global Biogeochemical Cycles 34:e2019GB006334.

    Article  CAS  Google Scholar 

  • Weaver CA, Armitage AR. 2018. Nutrient enrichment shifts mangrove height distribution: implications for coastal woody encroachment. PLOS ONE 13: article e0193617

  • Yando ES, Osland MJ, Hester MW. 2018. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces. Oecologia 187:319–31.

    Article  CAS  PubMed  Google Scholar 

  • Yando ES, Osland MJ, Willis JM, Day RH, Krauss KW, Hester MW. 2016. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. The Journal of Ecology 104(4):1020–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the many folks who gave their time and effort in the field and in laboratory: J. Goff, E. Wellman, G. Martin, A. Moorhead, T. Gruninger, N. Snyder, G. MacManus, L. Puishys, S. Lindhardt, N. Moreno, L. Linn, P. Chanton, B. Mortazavi, A. Robertson, E. Waddell, H. Ehrmann. The Louisiana Department of Wildlife and Fisheries (Grand Isle, LA) provided regular lodging, as well as additional lodging support from the USDA Plant Materials Center (Golden Meadow, LA). We are thankful to ConocoPhillips for access to their property. Funding for this project was provided by the Dauphin Island Sea Lab Fellowship, the University of South Alabama’s Department of Marine Sciences Fellowship, with additional support from The Wetland Foundation and the Birmingham Audubon Society. MJO’s participation was supported by the DOI Southeast Climate Adaptation Science Center, USGS Ecosystems Mission Area, USGS Greater Everglades Priority Ecosystem Science Program, and the USGS Land Change Science Program Climate R&D Program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Macy.

Additional information

Authors Contributions

AM, MJO, JAC, JC conceived or designed study; AM performed research; AM, JC analyzed data; JAC, MJO contributed new methods or models; AM, MJO, JAC, JC wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macy, A., Osland, M.J., Cherry, J.A. et al. Changes in Ecosystem Nitrogen and Carbon Allocation with Black Mangrove (Avicennia germinans) Encroachment into Spartina alterniflora Salt Marsh. Ecosystems 24, 1007–1023 (2021). https://doi.org/10.1007/s10021-020-00565-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00565-w

Keywords

Navigation