Skip to main content
Log in

T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The T-product for third-order tensors has been used extensively in the literature. In this paper, we first introduce first-order and second-order T-derivatives for the multi-variable real-valued function with the tensor T-product. Inspired by an equivalent characterization of a twice continuously T-differentiable multi-variable real-valued function being convex, we present a definition of the T-positive semidefiniteness of third-order symmetric tensors. After that, we extend many properties of positive semidefinite matrices to the case of third-order symmetric tensors. In particular, analogue to the widely used semidefinite programming (SDP for short), we introduce the semidefinite programming over the space of third-order symmetric tensors (T-semidefinite programming or TSDP for short), and provide a way to solve the TSDP problem by converting it into an SDP problem in the complex domain. Furthermore, we give several TSDP examples and especially some preliminary numerical results for two unconstrained polynomial optimization problems. Experiments show that finding the global minimums of polynomials via the TSDP relaxation outperforms the traditional SDP relaxation for the test examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kilmer, M.E., Martin, C.D., Perrone, L.: A third-order generalization of the matrix SVD as a product of third-order tensors. Technical Report TR-2008-4, Tufts University, Department of Computer Science, October (2008)

  2. Khaleel, H.S., Sagheer, S.V.M., Baburaj, M., et al.: Denoising of rician corrupted 3D magnetic resonance images using tensor-SVD. Biomed. Signal Process. 44, 82–95 (2018)

    Google Scholar 

  3. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34, 148–172 (2013)

    MathSciNet  Google Scholar 

  4. Martin, C.D., Shafer, R., Larue, B.: An order-\(p\) tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35, A474–A490 (2013)

    MathSciNet  Google Scholar 

  5. Soltani, S., Kilmer, M.E., Hansen, P.C.: A tensor-based dictionary learning approach to tomo-graphic image reconstruction. BIT 56, 1425–1454 (2016)

    MathSciNet  Google Scholar 

  6. Tarzanagh, D.A., Michailidis, G.: Fast randomized algorithms for t-product based tensor operations and decompositions with applications to imaging data. SIAM J. Imaging Sci. 11, 2629–2664 (2018)

    MathSciNet  Google Scholar 

  7. Zhou, P., Lu, C., Lin, Z., Zhang, C.: Tensor factorization for low-rank tensor completion. IEEE Trans. Image Process. 27, 1152–1163 (2018)

    MathSciNet  Google Scholar 

  8. Baburaj, M., George, S.N.: Tensor based approach for inpainting of video containing sparse text. Multimed. Tools Appl. 78(2), 1805–1829 (2019)

    Google Scholar 

  9. Semerci, O., Hao, N., Kilmer, M.E., Miller, E.L.: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography. IEEE Trans. Image Process. 23, 1678–1693 (2014)

    MathSciNet  Google Scholar 

  10. Hao, N., Kilmer, M.E., Braman, K., Hoover, R.C.: Facial recognition using tensor decompositions. SIAM J. Imaging Sci. 6, 437–463 (2013)

    MathSciNet  Google Scholar 

  11. Xie, Y., Tao, D., Zhang, W., Liu, Y., Zhang, L., Qu, Y.: On unifying multi-view self-representations for clustering by tensor multi-rank minimization. Int. J. Comput. Vis. 126, 1157–1179 (2018)

    MathSciNet  Google Scholar 

  12. Yin, M., Gao, J., Xie, S., Guo, Y.: Multiview subspace clustering via tensorial t-product representation. IEEE Trans. Neural Netw. Learn. Syst. 30(3), 851–864 (2019)

    MathSciNet  Google Scholar 

  13. Chan, T., Yang, Y., Hsuan, Y.: Polar \(n\)-complex and \(n\)-bicomplex singular value decomposition and principal component pursuit. IEEE Trans. Signal Process. 64, 6533–6544 (2016)

    MathSciNet  Google Scholar 

  14. Liu, Y., Chen, L., Zhu, C.: Improved robust tensor principal component analysis via low-rank core matrix. IEEE J-STSP 12, 1378–1389 (2018)

    Google Scholar 

  15. Long, Z., Liu, Y., Chen, L., et al.: Low rank tensor completion for multiway visual data. Signal Process. 155, 301–316 (2019)

    Google Scholar 

  16. Sun, W., Huang, L., So, H.C., et al.: Orthogonal tubal rank-\(1\) tensor pursuit for tensor completion. Signal Process. 157, 213–224 (2019)

    Google Scholar 

  17. Kong, H., Xie, X., Lin, Z.: \(t\)-Schatten-\(p\) norm for low-rank tensor recovery. IEEE J-STSP 12, 1405–1419 (2018)

    Google Scholar 

  18. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE T. Pattern Anal. 42, 925–938 (2020)

    Google Scholar 

  19. Ely, G., Aeron, S., Hao, N., et al.: 5D seismic data completion and denoising using a novel class of tensor decompositions. Geophysics 80, V83–V95 (2015)

    Google Scholar 

  20. Hu, W., Tao, D., Zhang, W., Xie, Y., Yang, Y.: The twist tensor nuclear norm for video completion. IEEE Trans. Neural Netw. Learn. Syst. 28, 2961–2973 (2017)

    MathSciNet  Google Scholar 

  21. Hu, W., Yang, Y., Zhang, W., Xie, Y.: Moving object detection using tensor-based low-rank and saliently fused-sparse decomposition. IEEE Trans. Image Process. 26, 724–737 (2017)

    MathSciNet  Google Scholar 

  22. Liu, X., Aeron, S., Aggarwal, V., Wang, X., Wu, M.: Adaptive sampling of RF fingerprints for fine-grained indoor localization. IEEE Trans. Mobile Comput. 15, 2411–2423 (2016)

    Google Scholar 

  23. Madathil, B., George, S.N.: Twist tensor total variation regularized-reweighted nuclear norm based tensor completion for video missing area recovery. Inform. Sci. 423, 376–397 (2018)

    MathSciNet  Google Scholar 

  24. Madathil, B., George, S.N.: DCT based weighted adaptive multi-linear data completion and denoising. Neurocomputing 318, 120–136 (2018)

    Google Scholar 

  25. Qin, B., Jin, M., Hao, D., et al.: Accurate vessel extraction via tensor completion of background layer in X-ray coronary angiograms. Pattern Recogn. 87, 38–54 (2019)

    Google Scholar 

  26. Wang, A., Lai, Z., Jin, Z.: Noisy low-tubal-rank tensor completion. Neurocomputing 330, 267–279 (2019)

    Google Scholar 

  27. Yang, L., Huang, Z.H., Hu, S., Han, J.: An iterative algorithm for third-order tensor multi-rank minimization. Comput. Optim. Appl. 63, 169–202 (2016)

    MathSciNet  Google Scholar 

  28. Zhang, C., Hu, W., Jin, T., et al.: Nonlocal image denoising via adaptive tensor nuclear norm minimization. Neural Comput. Appl. 29, 3–19 (2018)

    Google Scholar 

  29. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD, pp. 3842–3849. IEEE, CVPR (2014)

  30. Zhang, Z., Aeron, S.: Exact tensor completion using t-SVD. IEEE Trans. Signal Process. 65, 1511–1526 (2017)

    MathSciNet  Google Scholar 

  31. Zhang, Z.: A novel algebraic framework for processing multidimensional data: theory and application. Tufts University, Ph.D thesis, (2017)

  32. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435, 641–658 (2011)

    MathSciNet  Google Scholar 

  33. Braman, K.: Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl. 433, 1241–1253 (2010)

    MathSciNet  Google Scholar 

  34. Miao, Y., Qi, L., Wei, Y.M.: T-Jordan canonical form and T-Drazin inverse based on the T-Product. Commun. Appl. Math. Comput. (2020). https://doi.org/10.1007/s42967-019-00055-4

    Article  Google Scholar 

  35. Lund, K.: The tensor t-function: a definition for functions of third-order tensors. Numer Linear Algebra Appl. 27, e2288 (2020)

    MathSciNet  Google Scholar 

  36. Newman, E., Horesh, L., Avron, H., Kilmer, M.: Stable tensor neural networks for rapid deep learning. arXiv preprint arXiv:1811.06569 (2018)

  37. Miao, Y., Qi, L., Wei, Y.: Generalized tensor function via the tensor singular value decomposition based on the T-product. Linear Algebra Appl. 590, 258–303 (2020)

    MathSciNet  Google Scholar 

  38. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2009)

    Google Scholar 

  39. Horn, A.R., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  40. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Method. Softw. 11, 625–653 (1999)

    MathSciNet  Google Scholar 

  41. Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3-a Matlab software package for semidefinite programming. Optim. Method. Softw. 11, 545–581 (1999)

    MathSciNet  Google Scholar 

  42. Sun, D.F., Toh, K.C., Yuan, Y.C., Zhao, X.Y.: SDPNAL\(+\): A Matlab software for semidefinite programming with bound constraints. Optim. Method. Softw. (version 1.0) 35, 87–115 (2020)

    MathSciNet  Google Scholar 

  43. Helmberg, C.: Semidefinite programming for combinatorial optimization. Technical Report 00-34, Konrad-Zuse-Zentrum für Informationstechink Berlin, Takustraße 7, D-14195 Berlin, Germany, (2000)

  44. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    MathSciNet  Google Scholar 

  45. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    MathSciNet  Google Scholar 

  46. Coleman, R.: Calculus on Normed Vector Spaces, Universitext. Springer, New York (2012)

    Google Scholar 

  47. Qi, L., Luo, Z.Y.: Tensor analysis: spectral theory and special tensors, Society for Industrial and Applied Mathematics, Philadelphia, (2017)

  48. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    Google Scholar 

  49. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  50. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization, Analysis, Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia, (2001)

  51. Nie, J.: Symmetric tensor nuclear norms. SIAM J. Appl. Algebra Geometry 1, 599–625 (2017)

    MathSciNet  Google Scholar 

  52. Friedland, S., Lim, L.H.: Nuclear norm of higher-order tensors. Math. Comput. 87, 1255–1281 (2018)

    MathSciNet  Google Scholar 

  53. Shor, N.Z.: Dual quadratic estimates in polynomial and Boolean programming. Ann. Oper. Res. 25, 163–168 (1990)

    MathSciNet  Google Scholar 

  54. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for \((0, 1)\)-quadratic programming. J. Global Optim. 7, 51–73 (1995)

    MathSciNet  Google Scholar 

  55. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96, 293–320 (2003)

    MathSciNet  Google Scholar 

  56. Nie, J., Wang, L.: Regularization methods for SDP relaxations in large-scale polynomial optimization. SIAM J. Matrix Anal. Appl. 22, 408–428 (2012)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant No. 11871051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hai Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, MM., Huang, ZH. & Wang, Y. T-positive semidefiniteness of third-order symmetric tensors and T-semidefinite programming. Comput Optim Appl 78, 239–272 (2021). https://doi.org/10.1007/s10589-020-00231-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00231-w

Keywords

Mathematics Subject Classification

Navigation