Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T19:51:55.831Z Has data issue: false hasContentIssue false

Synthesis of Zeolite Nay From Dealuminated Metakaolin as Ni Support for Co2 Hydrogenation to Methane

Published online by Cambridge University Press:  01 January 2024

Novia Amalia Sholeha
Affiliation:
Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya 60111, Indonesia
Lailatul Jannah
Affiliation:
Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya 60111, Indonesia
Hannis Nur Rohma
Affiliation:
Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya 60111, Indonesia
Nurul Widiastuti
Affiliation:
Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya 60111, Indonesia
Didik Prasetyoko*
Affiliation:
Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya 60111, Indonesia
Aishah Abdul Jalil
Affiliation:
Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor Bahru, Johor, Malaysia Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Skudai, 81310 UTM, Skudai, Johor Bahru, Johor, Malaysia
Hasliza Bahruji*
Affiliation:
Centre of Advanced Material and Energy Science, University Brunei Darussalam, Jalan Tungku Link BE 1410, Brunei Darussalam
*
*E-mail address of corresponding author: didikp@chem.its.ac.id
*E-mail address of corresponding author: didikp@chem.its.ac.id

Abstract

The conversion of CO2 into carbon feedstock via CO2 hydrogenation to methane requires a stable catalyst for reaction at high temperatures. Zeolite NaY (abbreviated hereafter as NaY) synthesized from naturally occurring kaolin provides a stable support for Ni nanoparticles. Kaolin can be further dealuminated using sulfuric acid to reduce the Si/Al ratio, but the presence of the remaining sulfur is detrimental to the formation of NaY. The objective of the present study was to synthesize NaY from dealuminated metakaolin, using a method that minimizes the detrimental effects of sulfur, and to investigate the effect of its activity on CO2 methanation. Kaolin from Bangka Belitung, Indonesia, was calcined at 720°C for 4 h to form metakaolin (M) and subsequently treated with sulfuric acid to form dealuminated metakaolin (DM). Excess sulfur was removed by washing with deionized water at 80°C. Zeolite NaY was then synthesized from the M and DM via a hydrothermal method; the relationship between morphology, structural properties, and the catalytic activity of NaY was determined for CO2 methanation at 200–500°C. The presence of excess sulfur following dealumination of metakaolin produced NaY with small surface area and porosity. After Ni impregnation, the synthesized NaY exhibited significant catalytic activity and stability for the reaction at 250–500°C. Analysis by scanning electron microscopy and high-resolution transmission electron microscopy showed the formation of well-defined octahedral structures and large surface areas of ~500 m2/g when NaY was synthesized using DM. Catalytic activity indicated significant conversion of CO2 (67%) and CH4 selectivity (94%) of Ni/NaY from DM in contrast to only 47% of CO2 conversion with 77% of CH4 selectivity for Ni/NaY synthesized from M. Dealuminated metakaolin also produced robust NaY, which indicated no deactivation at 500°C. The combination of well-defined crystallite structures, large surface area, and small Al contents in NaY synthesized from DM helped in CO2 conversion and CH4 selectivity for the reaction at 200–500°C.

Type
Original Paper
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaba, P. A., Sani, Y. M., Mohammed, I. Y., Abakr, Y. A., & Wan Daud, W. M. A. (2017). Synthesis of hierarchical nanoporous HY zeolites from activated kaolin, a central composite design optimization study. Advanced Powder Technology, 28, 13991410. https://doi.org/10.1016/j.apt.2017.03.008CrossRefGoogle Scholar
Alkan, M., Hopa, Ç., Yilmaz, Z., & Güler, H. (2005). The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous and Mesoporous Materials, 86, 176184. https://doi.org/10.1016/j.micromeso.2005.07.008CrossRefGoogle Scholar
Asghari, A., Khorrami, M. K., & Kazemi, S. H. (2019). Hierarchical HZSM5 zeolites based on natural kaolinite as a high-performance catalyst for methanol to aromatic hydrocarbons conversion. Scientific Reports, 9, 17526. https://doi.org/10.1038/s41598-019-54089-yCrossRefGoogle ScholarPubMed
Atzori, L., Cutrufello, M. G., Meloni, D., Monaci, R., Cannas, C., Gazzoli, D., Sini, M. F., Delana, P., & Rombi, E. (2017). CO2 methanation on hard-templated NiOCeO2 mixed oxides. International Journal of Hydrogen Energy, 42, 2068920702. https://doi.org/10.1016/j.ijhydene.2017.06.198CrossRefGoogle Scholar
Aziz, M. A. A., Jalil, A. A., Triwahyono, S., & Ahmad, A. (2015). CO2 methanation over heterogeneous catalysts: recent progress and future prospects. Green Chemistry, 17, 26472663. https://doi.org/10.1039/C5GC00119FCrossRefGoogle Scholar
Azzolina-Jury, F., Bento, D., Henriques, C., & Thibault-Starzyk, F. (2017). Chemical engineering aspects of plasma-assisted CO2 hydrogenation over nickel zeolites under partial vacuum. Journal of CO2 Utilization, 22, 97109. https://doi.org/10.1016/j.jcou.2017.09.017CrossRefGoogle Scholar
Bacariza, M. C., Graça, I., Bebiano, S. S., Lopes, J. M., & Henriques, C. (2018). Micro- and mesoporous supports for CO2 methanation catalysts: A comparison between SBA-15, MCM-41 and USY zeolite. Chemical Engineering Science, 175, 7283. https://doi.org/10.1016/j.ces.2017.09.027CrossRefGoogle Scholar
Bacariza, M. C., Graça, I., Lopes, J. M., & Henriques, C. (2019). Tuning zeolite properties towards CO2 methanation: An overview. ChemCatChem, 11, 23882400. https://doi.org/10.1002/cctc.201900229CrossRefGoogle Scholar
Bahruji, H., Bowker, M., Hutchings, G., Dimitratos, N., Wells, P., Gibson, E., et al. (2016). Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 343, 133146. https://doi.org/10.1016/j.jcat.2016.03.017CrossRefGoogle Scholar
Bessa, R. D. A., Costa, L. D. S., Oliveira, C. P., Bohn, F., do Nascimento, R. F., Sasaki, J. M., & Loiola, A. R. (2017). Kaolinbased magnetic zeolites A and P as water softeners. Microporous and Mesoporous Materials, 245, 6472. https://doi.org/10.1016/j.micromeso.2017.03.004CrossRefGoogle Scholar
Chen, L., Qian, J.-Y., Yang, C., Xu, P.-P., Zhu, D.-D., Zhong, J., He, M.-Y., Chen, Q., & Zhang, Z.-H. (2020). Direct synthesis of 5A zeolite from palygorskite: The influence of crystallization directing agent on the separation performance for hexane isomers. Clays and Clay Minerals, 68, 18. https://doi.org/10.1007/s42860-019-00057-6CrossRefGoogle Scholar
Colina, F. G., & Llorens, J. (2007). Study of the dissolution of dealuminated kaolin in sodium–potassium hydroxide during the gel formation step in zeolite X synthesis. Microporous and Mesoporous Materials, 100, 302311. https://doi.org/10.1016/j.micromeso.2006.11.013CrossRefGoogle Scholar
Dong, J., Wang, X., Xu, H., Zhao, Q., & Li, J. (2007). Hydrogen storage in several microporous zeolites. International Journal of Hydrogen Energy, 32, 49985004. https://doi.org/10.1016/j.ijhydene.2007.08.009CrossRefGoogle Scholar
Doyle, A. M., Alismaeel, Z.T., Albayati, T.M., & Abbas, A. S. (2017). High purity FAU-type zeolite catalysts from shale rock for biodiesel production. Fuel, 199, 394402. https://doi.org/10.1016/j.fuel.2017.02.098CrossRefGoogle Scholar
Du, L., Ding, S., Li, Z., Lv, E., Lu, J., & Ding, J. (2018). Transesterification of castor oil to biodiesel using NaY zeolite-supported La2O3 catalysts. Energy Conversion and Management, 173, 728734. https://doi.org/10.1016/j.enconman.2018.07.053CrossRefGoogle Scholar
Ewald, S., Kolbeck, M., Kratky, T., Wolf, M., & Hinrichsen, O. (2019). On the deactivation of Ni-Al catalysts in CO2 methanation. Applied Catalysis A: General, 570, 376386. https://doi.org/10.1016/j.apcata.2018.10.033CrossRefGoogle Scholar
Feng, A., Yu, Y., Mi, L., Cao, Y., Yu, Y., & Song, L. (2019). Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent. Microporous and Mesoporous Materials, 280, 211218. https://doi.org/10.1016/j.micromeso.2019.01.039CrossRefGoogle Scholar
Frusteri, F., Frusteri, L., Costa, F., Mezzapica, A., Cannilla, C., & Bonura, G. (2017). Methane production by sequential supercritical gasification of aqueous organic compounds and selective CO2 methanation. Applied Catalysis A: General, 545, 2432. https://doi.org/10.1016/j.apcata.2017.07.030CrossRefGoogle Scholar
Fukuhara, C., Hayakawa, K., Suzuki, Y., Kawasaki, W., & Watanabe, R. (2017). A novel nickel-based structured catalyst for CO2 methanation: A honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources. Applied Catalysis A: General, 532, 1218. https://doi.org/10.1016/j.apcata.2016.11.036CrossRefGoogle Scholar
Gaidoumi, A. E., Benabdallah, A. C., Bali, B. E., & Kherbeche, A. (2018). Synthesis and characterization of zeolite HS using natural pyrophyllite as new clay source. Arabian Journal for Science and Engineering, 43, 191197. https://doi.org/10.1007/s13369-017-2768-8CrossRefGoogle Scholar
Ginter, D. M., Bell, A. T., & Radke, C. J. (1992). The effects of gel aging on the synthesis of NaY zeolite from colloidal silica. Zeolites, 12, 742749. https://doi.org/10.1016/0144-2449(92)90126-ACrossRefGoogle Scholar
Graça, I., González, L. V., Bacariza, M. C., Fernandes, A., Henriques, C., Lopes, J. M., & Ribeiro, M. F. (2014). CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Applied Catalysis B: Environmental, 147, 101110. https://doi.org/10.1016/j.apcatb.2013.08.010CrossRefGoogle Scholar
Graça, I., Bacariza, M. C., Fernandes, A., & Chadwick, D. (2018). Desilicated NaY zeolites impregnated with magnesium as catalysts for glucose isomerisation into fructose. Applied Catalysis B: Environmental, 224, 660670. https://doi.org/10.1016/j.apcatb.2017.11.009CrossRefGoogle Scholar
Holmberg, B. A., Wang, H., Norbeck, J. M., & Yan, Y. (2003). Controlling size and yield of zeolite Y nanocrystals using tetramethylammonium bromide. Microporous and Mesoporous Materials, 59, 1328. https://doi.org/10.1016/S1387-1811(03)00271-3CrossRefGoogle Scholar
Iftitahiyah, V. N., Prasetyoko, D., Hartati, , Ni'Mah, Y. L., Bahruji, H., & Nur, H. (2019). Esterification of acetic acid and benzyl alcohol over Zeolite HX produced from Bangka Belitung kaolin. Malaysian Journal of Analytical Sciences, 23, 524533. https://doi.org/10.17576/mjas-2019-2303-17Google Scholar
Kahraman, S., Önal, M., Sarkaya, Y., & Bozdoğan, $ID. (2005). Characterization of silica polymorphs in kaolins by X-ray diffraction before and after phosphoric acid digestion and thermal treatment. Analytica Chimica Acta, 552, 201206. https://doi.org/10.1016/j.aca.2005.07.045CrossRefGoogle Scholar
Kloprogge, J.T., Ruan, H., & Frost, R. L. (2001). Near-infrared spectroscopic study of basic aluminum sulfate and nitrate. Journal of Materials Science, 36, 603607. https://doi.org/10.1023/A:1004860118470CrossRefGoogle Scholar
Kovo, A. S., Hernandez, O., & Holmes, S. M. (2009). Synthesis and characterization of zeolite Y and ZSM-5 from Nigerian Ahoko Kaolin using a novel, lower temperature, metakaolinization technique. Journal of Materials Chemistry, 19, 62076212. https://doi.org/10.1039/B907554BCrossRefGoogle Scholar
Li, Q., Zhang, Y., Cao, Z., Gao, W., & Cui, L. (2010). Influence of synthesis parameters on the crystallinity and Si/Al ratio of NaY zeolite synthesized from kaolin. Petroleum Science, 7, 403409. https://doi.org/10.1007/s12182-010-0085-xCrossRefGoogle Scholar
Li, N., Li, T., Liu, H., Yue, Y., & Bao, X. (2017). A novel approach to synthesize in-situ crystallized zeolite/kaolin composites with high zeolite content. Applied Clay Science, 144, 150156. https://doi.org/10.1016/j.clay.2017.05.010CrossRefGoogle Scholar
Luo, J., Zhang, H., & Yang, J. (2016). Hydrothermal synthesis of sodalite on alkali-activated coal fly ash for removal of lead ions. Procedia Environmental Sciences, 31, 605614. https://doi.org/10.1016/j.proenv.2016.02.105CrossRefGoogle Scholar
Mu, L., Feng, W., Zhang, H., Hu, X., & Cui, Q. (2019). Synthesis and catalytic performance of a small crystal NaY zeolite with high SiO2/ Al2O3 ratio. RSC Advances, 9, 20528-20535. https://doi.org/10.1039/C9RA03324FCrossRefGoogle Scholar
Ptácek, P., Šoukal, F., Opravil, T., Nosková, M., Havlica, J., & Brandštetr, J. (2011). Mid-infrared spectroscopic study of crystallization of cubic spinel phase from metakaolin. Journal of Solid State Chemistry, 184, 26612667. https://doi.org/10.1016/j.jssc.2011.07.038CrossRefGoogle Scholar
Qoniah, I., Prasetyoko, D., Bahruji, H., Triwahyono, S., Jalil, A. A., Suprapto, H., & Purbaningtias, T. E. (2015). Direct synthesis of mesoporous aluminosilicates from Indonesian kaolin clay without calcination. Applied Clay Science, 118, 290294. https://doi.org/10.1016/j.clay.2015.10.007CrossRefGoogle Scholar
Quindimil, A., De-La-Torre, U., Pereda-Ayo, B., González-Marcos, J. A., & González-Velasco, J. R. (2018). Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation. Applied Catalysis B: Environmental, 238, 393403. https://doi.org/10.1016/j.apcatb.2018.07.034CrossRefGoogle Scholar
Rakshit, S., Ghosh, S., Chall, S., Mati, S. S., Moulik, S. P., & Bhattacharya, S. C. (2013). Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: A cost effective and eco friendly approach. RSC Advances, 3, 1934819356. https://doi.org/10.1039/C3RA42628ACrossRefGoogle Scholar
Rasouli, H. R., Golestani-fard, F., Mirhabibi, A. R., Nasab, G. M., Mackenzie, K. J. D., & Shahraki, M. H. (2015). Fabrication and properties of microporous metakaolin-based geopolymer bodies with polylactic acid (PLA) fibers as pore generators. Ceramics International, 41, 78727880. https://doi.org/10.1016/j.ceramint.2015.02.125CrossRefGoogle Scholar
Sperinck, S., Raiteri, P., Marks, N., & Wright, K. (2011). Dehydroxylation of kaolinite to metakaolin—a molecular dynamics study. Journal of Materials Chemistry, 21, 21182125. https://doi.org/10.1039/C0JM01748ECrossRefGoogle Scholar
Sri Rahayu, E., Subiyanto, G., Imanuddin, A., Wiranto, Nadina S., Ristiani, R., Suhermina, , & Yuniarti, E. (2018). Kaolin as a source of silica and alumina for synthesis of zeolite Y and amorphous silica alumina. MATEC Web Conference, 156.Google Scholar
Wahyuni, T., Prasetyoko, D., Suprapto, S., Qoniah, I., Bahruji, H., Dawam, A., Triwahyono, S., & Jalil, A. A. (2019). Direct synthesis of sodalite from Indonesian kaolin for adsorption of Pb2+ solution, kinetics, and isotherm approach. Bulletin of Chemical Reaction Engineering and Catalysis, 14, 502512. https://doi.org/10.9767/bcrec.14.3.2939.502-512CrossRefGoogle Scholar
Walton, K. S., Abney, M. B., & Douglas LeVan, M. (2006). CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous and Mesoporous Materials, 91, 7884. https://doi.org/10.1016/j.micromeso.2005.11.023CrossRefGoogle Scholar
Wang, P., Zha, F., Yao, L., & Chang, Y. (2018). Synthesis of light olefins from CO2 hydrogenation over (CuO-ZnO)-kaolin/SAPO-34 molecular sieves. Applied Clay Science, 163, 249256. https://doi.org/10.1016/j.clay.2018.06.038CrossRefGoogle Scholar
Weitkamp, J. & Hunger, M. (2005). Preparation of zeolites via the drygel synthesis method. in: Oxide Based Materials: New Sources, Novel Phases, New Applications (A. Gamba, C. Colella, and S. Coluccia, Editors). Studies in Surface Science and Catalysis (Vol. 155). Amsterdam, Elsevier, pp. 112.Google Scholar
Westermann, A., Azambre, B., Bacariza, M. C., Graça, I., Ribeiro, M. F., Lopes, J. M., & Henriques, C. (2015). Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study. AppliedCatalysis B: Environmental, 174–175, 120125. https://doi.org/10.1016/j.apcatb.015.02.026CrossRefGoogle Scholar
Zhang, Z., Tian, Y., Zhang, L., Hu, S., Xiang, J., Wang, Y. et al. (2019). Impacts of nickel loading on properties, catalytic behaviors of Ni/γ–Al2O3 catalysts and the reaction intermediates formed in methanation of CO2. International Journal of Hydrogen Energy, 44, 92919306. https://doi.org/10.1016/j.ijhydene.2019.02.129CrossRefGoogle Scholar
Zhao, K., Li, Z., & Bian, L. (2016). CO2 methanation and comethanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts. Frontiers of Chemical Science and Engineering, 10, 273280. https://doi.org/10.1007/s11705-016-1563-5CrossRefGoogle Scholar
Zhou, G., Wu, T., Zhang, H., Xie, H., & Feng, Y. (2014). Carbon dioxide methanation on ordered mesoporous CO/KIT-6 CATALYST. Chemical Engineering Communications, 201, 233240. https://doi.org/10.1080/00986445.2013.766881CrossRefGoogle Scholar