Skip to main content
Log in

Effect of the Nanoparticle Functionalization on the Cavitation and Crazing Process in the Polymer Nanocomposites

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The nanoparticle (NP) functionalization is an effective method for enhancing their compatibility with polymer which can influence the fracture property of the polymer nanocomposites (PNCs). This work aims to further understand the cavitation and crazing process, hoping to uncover the fracture mechanism on the molecular level. By adopting a coarse-grained molecular dynamics simulation, the fracture energy of PNCs first increases and then decreases with increasing the NP functionalization degree α while it shows a continuous increase with increasing the interaction εpA between polymer and modified beads. The bond orientation degree is first characterized which is referred to as the elongation. Meanwhile, the stress by polymer chains is gradually reduced with increasing the α or the εpA while that by NPs is enhanced. Furthermore, the percentage of stress by polymer chains first increases and then decreases with increasing the strain while that by NPs shows a contrast trend. Moreover, the number of voids is quantified which first increases and then decreases with increasing the strain which reflects their nucleation and coalescence process. The voids prefer to generate from the polymer-NP interface to the polymer matrix with increasing α or εpA. As a result, the number of voids first increases and then decreases with increasing α while it continuously declines with the εpA. In summary, our work provides a clear understanding on how the NP functionalization influences the cavitation and crazing process during the fracture process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zeng, Q. H.; Yu, A. B.; Lu, G. Q. Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 2008, 33, 191–269.

    CAS  Google Scholar 

  2. Allegra, G.; Raos, G.; Vacatello, M. Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement. Prog. Polym. Sci. 2008, 33, 683–731.

    CAS  Google Scholar 

  3. Cao, X.; Zhou, X.; Weng, G. Nanocavitation in silica filled styrenebutadiene rubber regulated by varying silica-rubber interfacial bonding. Polym. Adv. Technol. 2018, 29, 1779–1787.

    CAS  Google Scholar 

  4. Zhong, B.; Jia, Z.; Luo, Y.; Jia, D.; Liu, F. Understanding the effect of filler shape induced immobilized rubber on the interfacial and mechanical strength of rubber composites. Polym. Test. 2017, 58, 31–39.

    CAS  Google Scholar 

  5. Rafiee, M. A.; Rafiee, J.; Srivastava, I.; Wang, Z.; Song, H.; Yu, Z. Z.; Koratkar, N. Fracture and fatigue in graphene nanocomposites. Small 2010, 6, 179–183.

    CAS  PubMed  Google Scholar 

  6. Bhattacharyya, S.; Sinturel, C.; Bahloul, O.; Saboungi, M. L.; Thomas, S.; Salvetat, J. P. Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 2008, 46, 1037–1045.

    CAS  Google Scholar 

  7. Zhou, T. H.; Ruan, W. H.; Rong, M. Z.; Zhang, M. Q.; Mai, Y. L. Keys to Toughening of non-layered nanoparticles/polymer composites. Adv. Mater. 2007, 19, 2667–2671.

    CAS  Google Scholar 

  8. Kramer, E. J.; Berger, L. L. In Fundamental processes of craze growth and fracture. Springer Berlin Heidelberg: Berlin, Heidelberg, 1990, p. 1–68.

    Google Scholar 

  9. Estevez, R.; Tijssens, M. G. A.; van der Giessen, E. Modeling of the competition between shear yielding and crazing in glassy polymers. J. Mech. Phys. Solids 2000, 48, 2585–2617.

    CAS  Google Scholar 

  10. Lee, J. Y.; Zhang, Q.; Todd Emrick, A.; Crosby, A. J. Nanoparticle alignment and repulsion during failure of glassy polymer nanocomposites. Macromolecules 2006, 39, 7392–7396.

    CAS  Google Scholar 

  11. Niu, W.; Zhu, Y.; Wang, R.; Lu, Z.; Liu, X.; Sun, J. Remalleable, healable, and highly sustainable supramolecular polymeric materials combining superhigh strength and ultrahigh toughness. ACS Appl. Mater. Interfaces 2020, 12, 30805–30814.

    CAS  PubMed  Google Scholar 

  12. Zhang, H.; Scholz, A. K.; de Crevoisier, J.; Berghezan, D.; Narayanan, T.; Kramer, E. J.; Creton, C. Nanocavitation around a crack tip in a soft nanocomposite: a scanning microbeam small angle X-ray scattering study. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 422–429.

    CAS  Google Scholar 

  13. Zhang, H.; Scholz, A. K.; Vion-Loisel, F.; Merckel, Y.; Brieu, M.; Brown, H.; Roux, S.; Kramer, E. J.; Creton, C. Opening and closing of nanocavities under cyclic loading in a soft nanocomposite probed by real-time small-angle X-ray scattering. Macromolecules 2013, 46, 900–913.

    Google Scholar 

  14. Zhang, H.; Scholz, A. K.; Merckel, Y.; Brieu, M.; Berghezan, D.; Kramer, E. J.; Creton, C. Strain induced nanocavitation and crystallization in natural rubber probed by real time small and wide angle X-ray scattering. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1125–1138.

    CAS  Google Scholar 

  15. Zhang, H.; Scholz, A. K.; de Crevoisier, J.; Vion-Loisel, F.; Besnard, G.; Hexemer, A.; Brown, H. R.; Kramer, E. J.; Creton, C. Nanocavitation in carbon black filled styrene-butadiene rubber under tension detected by real time small angle X-ray scattering. Macromolecules 2012, 45, 1529–1543.

    CAS  Google Scholar 

  16. Sixou, B. Molecular dynamics simulation of the first stages of the cavitation process in amorphous polymers. Mol. Simul. 2007, 33, 965–973.

    CAS  Google Scholar 

  17. Makke, A.; Perez, M.; Rottler, J.; Lame, O.; Barrat, J. L. Predictors of cavitation in glassy polymers under tensile strain: a coarsegrained molecular dynamics investigation. Macromol. Theory Simul. 2011, 20, 826–836.

    CAS  Google Scholar 

  18. Robbins, M. O. Energy dissipation during rupture of adhesive bonds. Science 1996, 271, 482–484.

    Google Scholar 

  19. Rottler, J.; Robbins, M. O. Growth, microstructure, and failure of crazes in glassy polymers. Phys. Rev. E 2003, 68, 011801.

    Google Scholar 

  20. Toepperwein, G. N.; Pablo, J. J. D. Cavitation and crazing in rod-containing nanocomposites. Macromolecules 2011, 44, 5498–5509.

    CAS  Google Scholar 

  21. Papakonstantopoulos, G. J.; Riggleman, R. A.; Barrat, J. L.; de Pablo, J. J. Molecular plasticity of polymeric glasses in the elastic regime. Phys. Rev. E 2008, 77, 041502.

    Google Scholar 

  22. Riggleman, R. A.; Toepperwein, G. N.; Papakonstantopoulos, G. J.; Pablo, J. J. D. Dynamics of a glassy polymer nanocomposite during active deformation. Macromolecules 2009, 42, 3632–3640.

    CAS  Google Scholar 

  23. Gersappe, D. Molecular mechanisms of failure in polymer nanocomposites. Phys. Rev. Lett. 2002, 89, 058301.

    PubMed  Google Scholar 

  24. Kutvonen, A.; Rossi, G.; Puisto, S. R.; Rostedt, N. K.; Alanissila, T. Influence of nanoparticle size, loading, and shape on the mechanical properties of polymer nanocomposites. J. Chem. Phys. 2012, 137, 214901.

    PubMed  Google Scholar 

  25. Hu, F.; Nie, Y.; Li, F.; Liu, J.; Gao, Y.; Wang, W.; Zhang, L. Molecular dynamics simulation study of the fracture properties of polymer nanocomposites filled with grafted nanoparticles. Phys. Chem. Chem. Phys. 2019, 21, 11320–11328.

    CAS  PubMed  Google Scholar 

  26. Adohi, B. J. P.; Mdarhri, A.; Prunier, C.; Haidar, B.; Brosseau, C. A comparison between physical properties of carbon black-polymer and carbon nanotubes-polymer composites. J. Appl. Phys. 2010, 108, 074108.

    Google Scholar 

  27. Socher, R.; Krause, B.; Müller, M. T.; Boldt, R.; Pötschke, P. The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer 2012, 53, 495–504.

    CAS  Google Scholar 

  28. Park, S. J.; Kim, J. S. Role of chemically modified carbon black surfaces in enhancing interfacial adhesion between carbon black and rubber in a composite system. J. Colloid. Interf. Sci. 2000, 232, 311–316.

    CAS  Google Scholar 

  29. Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086.

    CAS  Google Scholar 

  30. Chao, H.; Riggleman, R. A. Effect of particle size and grafting density on the mechanical properties of polymer nanocomposites. Polymer 2013, 54, 5222–5229.

    CAS  Google Scholar 

  31. Gao, P.; Guo, H. Transferability of the coarse-grained potentials for rrans-1,4-polybutadiene. Phys. Chem. Chem. Phys. 2015, 17, 31693–31706.

    CAS  PubMed  Google Scholar 

  32. Ghanbari, A.; Ndoro, T. V. M.; Leroy, F.; Rahimi, M.; Böhm, M. C.; Müller-Plathe, F. Interphase structure in silica-polystyrene nanocomposites: a coarse-grained molecular dynamics study. Macromolecules 2012, 45, 572–584.

    CAS  Google Scholar 

  33. Rahimi, M.; Iriarte-Carretero, I.; Ghanbari, A.; Böhm, M. C.; Müller-Plathe, F. Mechanical behavior and interphase structure in a silica-polystyrene nanocomposite under uniaxial deformation. Nanotechnology 2012, 23, 305702.

    PubMed  Google Scholar 

  34. Svaneborg, C.; Karimi-Varzaneh, H. A.; Hojdis, N.; Fleck, F.; Everaers, R. Kremer-Grest models for commodity polymer melts: linking theory, experiment and simulation at the Kuhn scale. 2018, arXiv: 1808.03509v2.

  35. Eslami, H.; Rahimi, M.; Müller-Plathe, F. Molecular dynamics simulation of a silica nanoparticle in oligomeric poly(methyl methacrylate): a model system for studying the interphase thickness in a polymer-nanocomposite via different properties. Macromolecules 2013, 46, 8680–8692.

    CAS  Google Scholar 

  36. Raos, G.; Moreno, M.; Elli, S. Computational experiments on filled rubber viscoelasticity: what is the role of particle-particle interactions? Macromolecules 2006, 39, 6744–6751.

    CAS  Google Scholar 

  37. Srinivas, G.; Discher, D. E.; Klein, M. L. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nat. Mater. 2004, 3, 638.

    CAS  PubMed  Google Scholar 

  38. Papakonstantopoulos, G. J.; Doxastakis, M.; Nealey, P. F.; Barrat, J. L.; de Pablo, J. J. Calculation of local mechanical properties of filled polymers. Phys. Rev. E 2007, 75, 031803.

    Google Scholar 

  39. Duan, X.; Zhang, H.; Liu, J.; Gao, Y.; Zhao, X.; Zhang, L. Optimizing the electrical conductivity of polymer nanocomposites under the shear field by hybrid fillers: insights from molecular dynamics simulation. Polymer 2019, 168, 138–145.

    CAS  Google Scholar 

  40. Li, F.; Duan, X.; Zhang, H.; Li, B.; Liu, J.; Gao, Y.; Zhang, L. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites with polymer-grafted nanorods. Phys. Chem. Chem. Phys. 2018, 20, 21822–21831.

    CAS  PubMed  Google Scholar 

  41. Estevez, R.; Long, D. Probing and characterizing the early stages of cavitation in glassy polymers in molecular dynamics simulations. Modell. Simul. Mater. Sci. Eng. 2011, 19, 045004.

    Google Scholar 

  42. Gao, J.; Weiner, J. H. Bond orientation decay and stress relaxation in a model polymer melt. Macromolecules 1996, 29, 6048–6055.

    CAS  Google Scholar 

  43. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    CAS  Google Scholar 

  44. Hooper, J. B.; Schweizer, K. S. Contact aggregation, bridging, and steric stabilization in dense polymer-particle mixtures. Macromolecules 2005, 38, 8858–8869.

    CAS  Google Scholar 

  45. Toepperwein, G. N.; Riggleman, R. A.; de Pablo, J. J. Dynamics and deformation response of rod-containing nanocomposites. Macromolecules 2012, 45, 543–554.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21704003 and 51673013), and the Foundation for Innovative Research Groups of the NSF of China (No. 51521062). The authors acknowledge the National Supercomputer Centers in Lvliang, Guangzhou and Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Yang Gao.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, YL., Li, TT., Li, B. et al. Effect of the Nanoparticle Functionalization on the Cavitation and Crazing Process in the Polymer Nanocomposites. Chin J Polym Sci 39, 249–257 (2021). https://doi.org/10.1007/s10118-020-2488-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2488-5

Keywords

Navigation