Skip to main content

Advertisement

Log in

Long non-coding RNAs: the tentacles of chromatin remodeler complexes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Chromatin remodeler complexes regulate gene transcription, DNA replication and DNA repair by changing both nucleosome position and post-translational modifications. The chromatin remodeler complexes are categorized into four families: the SWI/SNF, INO80/SWR1, ISWI and CHD family. In this review, we describe the subunits of these chromatin remodeler complexes, in particular, the recently identified members of the ISWI family and novelties of the CHD family. Long non-coding (lnc) RNAs regulate gene expression through different epigenetic mechanisms, including interaction with chromatin remodelers. For example, interaction of lncBRM with BRM inhibits the SWI/SNF complex associated with a differentiated phenotype and favors assembly of a stem cell-related SWI/SNF complex. Today, over 50 lncRNAs have been shown to affect chromatin remodeler complexes and we here discuss the mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shah FR, Bhat YA, Wani AH (2018) Subnuclear distribution of proteins: links with genome architecture. Nucleus 9(1):42–55. https://doi.org/10.1080/19491034.2017.1361578

    Article  CAS  PubMed  Google Scholar 

  2. Annunziato AT (2008) DNA packaging: nucleosomes and chromatin. Nat Educ 1(26):310. https://www.nature.com/scitable/topicpage/dna-packaging-nucleosomes-and-chromatin-310

  3. Chereji RV, Clark DJ (2018) Major determinants of nucleosome positioning. Biophys J 114(10):2279–2289. https://doi.org/10.1016/j.bpj.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang R, Erler J, Langowski J (2017) Histone acetylation regulates chromatin accessibility: role of H4K16 in inter-nucleosome interaction. Biophys J 112(3):450–459. https://doi.org/10.1016/j.bpj.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  5. Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21(4):564–578. https://doi.org/10.1038/cr.2011.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alfert A, Moreno N, Kerl K (2019) The BAF complex in development and disease. Epigenetics Chromatin 12(1):19. https://doi.org/10.1186/s13072-019-0264-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clapier CR, Iwasa J, Cairns BR, Peterson CL (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol 18(7):407–422. https://doi.org/10.1038/nrm.2017.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Li B, Li W, Ma L, Zheng D, Li L, Yang W, Chu M, Chen W, Mailman RB, Zhu J, Fan G, Archer TK, Wang Y (2014) Transcriptional repression by the BRG1-SWI/SNF complex affects the pluripotency of human embryonic stem cells. Stem Cell Reports 3(3):460–474. https://doi.org/10.1016/j.stemcr.2014.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schaniel C, Ang YS, Ratnakumar K, Cormier C, James T, Bernstein E, Lemischka IR, Paddison PJ (2009) Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells 27(12):2979–2991. https://doi.org/10.1002/stem.223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marquez-Vilendrer SB, Rai SK, Gramling SJ, Lu L, Reisman DN (2016) BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience 3(11–12):337–350. https://doi.org/10.18632/oncoscience.333

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kakarougkas A, Ismail A, Chambers AL, Riballo E, Herbert AD, Kunzel J, Lobrich M, Jeggo PA, Downs JA (2014) Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol Cell 55(5):723–732. https://doi.org/10.1016/j.molcel.2014.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu Y, Zhang J, Chen X (2007) The activity of p53 is differentially regulated by Brm- and Brg1-containing SWI/SNF chromatin remodeling complexes. J Biol Chem 282(52):37429–37435. https://doi.org/10.1074/jbc.M706039200

    Article  CAS  PubMed  Google Scholar 

  13. Giles KA, Gould CM, Du Q, Skvortsova K, Song JZ, Maddugoda MP, Achinger-Kawecka J, Stirzaker C, Clark SJ, Taberlay PC (2019) Integrated epigenomic analysis stratifies chromatin remodellers into distinct functional groups. Epigenetics Chromatin 12(1):12. https://doi.org/10.1186/s13072-019-0258-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Local A, Huang H, Albuquerque CP, Singh N, Lee AY, Wang W, Wang C, Hsia JE, Shiau AK, Ge K, Corbett KD, Wang D, Zhou H, Ren B (2018) Identification of H3K4me1-associated proteins at mammalian enhancers. Nat Genet 50(1):73–82. https://doi.org/10.1038/s41588-017-0015-6

    Article  CAS  PubMed  Google Scholar 

  15. Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463(7280):474–484. https://doi.org/10.1038/nature08911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raab JR, Smith KN, Spear CC, Manner CJ, Calabrese JM, Magnuson T (2019) SWI/SNF remains localized to chromatin in the presence of SCHLAP1. Nat Genet 51(1):26–29. https://doi.org/10.1038/s41588-018-0272-z

    Article  CAS  PubMed  Google Scholar 

  17. Grossi E, Raimondi I, Goni E, Gonzalez J, Marchese FP, Chapaprieta V, Martin-Subero JI, Guo S, Huarte M (2020) A lncRNA-SWI/SNF complex crosstalk controls transcriptional activation at specific promoter regions. Nat Commun 11(1):936. https://doi.org/10.1038/s41467-020-14623-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu P, Wang Y, Wu J, Huang G, Liu B, Ye B, Du Y, Gao G, Tian Y, He L, Fan Z (2016) LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun 7:13608. https://doi.org/10.1038/ncomms13608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panatta E, Lena AM, Mancini M, Smirnov A, Marini A, Delli Ponti R, Botta-Orfila T, Tartaglia GG, Mauriello A, Zhang X, Calin GA, Melino G, Candi E (2020) Long non-coding RNA uc.291 controls epithelial differentiation by interfering with the ACTL6A/BAF complex. EMBO Rep 21(3):e46734. https://doi.org/10.15252/embr.201846734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lei JJ, Li HQ, Mo ZH, Liu KJ, Zhu LJ, Li CY, Chen WL, Zhang L (2019) Long noncoding RNA CDKN2B-AS1 interacts with transcription factor BCL11A to regulate progression of cerebral infarction through mediating MAP4K1 transcription. FASEB J 33(6):7037–7048. https://doi.org/10.1096/fj.201802252R

    Article  CAS  PubMed  Google Scholar 

  21. Zhang CH, Wang J, Zhang LX, Lu YH, Ji TH, Xu L, Ling LJ (2017) Shikonin reduces tamoxifen resistance through long non-coding RNA uc.57. Oncotarget 8(51):88658–88669. https://doi.org/10.18632/oncotarget.20809

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352. https://doi.org/10.1038/nature12986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi Y, Gao S, Zheng Y, Yao M, Ruan F (2019) LncRNA CASC15 functions as an unfavorable predictor of ovarian cancer prognosis and inhibits tumor progression through regulation of miR-221/ARID1A axis. Onco Targets Ther 12:8725–8736. https://doi.org/10.2147/ott.S219900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang LL, Sun KX, Wu DD, Xiu YL, Chen X, Chen S, Zong ZH, Sang XB, Liu Y, Zhao Y (2017) DLEU1 contributes to ovarian carcinoma tumourigenesis and development by interacting with miR-490-3p and altering CDK1 expression. J Cell Mol Med 21(11):3055–3065. https://doi.org/10.1111/jcmm.13217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liao J, Xie N (2019) Long noncoding RNA DSCAM-AS1 functions as an oncogene in non-small cell lung cancer by targeting BCL11A. Eur Rev Med Pharmacol Sci 23(3):1087–1092. https://doi.org/10.26355/eurrev_201902_16998

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Gao S, Peng X, Wu K, Yang S (2019) Roles of the INO80 and SWR1 Chromatin Remodeling Complexes in Plants. Int J Mol Sci. https://doi.org/10.3390/ijms20184591

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zlatanova J, Thakar A (2008) H2A.Z: view from the top. Structure 16(2):166–179. https://doi.org/10.1016/j.str.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  28. Giaimo BD, Ferrante F, Herchenrother A, Hake SB, Borggrefe T (2019) The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 12(1):37. https://doi.org/10.1186/s13072-019-0274-9

    Article  PubMed  PubMed Central  Google Scholar 

  29. Alatwi HE, Downs JA (2015) Removal of H2A.Z by INO80 promotes homologous recombination. EMBO Rep 16(8):986–994. https://doi.org/10.15252/embr.201540330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishi R, Wijnhoven P, le Sage C, Tjeertes J, Galanty Y, Forment JV, Clague MJ, Urbe S, Jackson SP (2014) Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nat Cell Biol 16(10):1016–1026. https://doi.org/10.1038/ncb3028(1011–1018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang B, Wang Y, Ma D, Wang L, Yang M (2020) Long noncoding RNA LCTS5 inhibits non-small cell lung cancer by interacting with INO80. Life Sci. https://doi.org/10.1016/j.lfs.2020.117680

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Zhu P, Luo J, Wang J, Liu Z, Wu W, Du Y, Ye B, Wang D, He L, Ren W, Wang J, Sun X, Chen R, Tian Y, Fan Z (2019) LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. EMBO J 38(17):e101110. https://doi.org/10.15252/embj.2018101110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Zhu P, Wang J, Zhu X, Luo J, Meng S, Wu J, Ye B, He L, Du Y, He L, Chen R, Tian Y, Fan Z (2018) Long noncoding RNA lncHand2 promotes liver repopulation via c-Met signaling. J Hepatol 69(4):861–872. https://doi.org/10.1016/j.jhep.2018.03.029

    Article  CAS  PubMed  Google Scholar 

  34. Zhou X, Han X, Wittfeldt A, Sun J, Liu C, Wang X, Gan LM, Cao H, Liang Z (2016) Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol 13(1):98–108. https://doi.org/10.1080/15476286.2015.1122164

    Article  PubMed  Google Scholar 

  35. Zhou L, Sun K, Zhao Y, Zhang S, Wang X, Li Y, Lu L, Chen X, Chen F, Bao X, Zhu X, Wang L, Tang LY, Esteban MA, Wang CC, Jauch R, Sun H, Wang H (2015) Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nat Commun 6:10026. https://doi.org/10.1038/ncomms10026

    Article  CAS  PubMed  Google Scholar 

  36. Huang G, Jiang H, Lin Y, Wu Y, Cai W, Shi B, Luo Y, Jian Z, Zhou X (2018) lncAKHE enhances cell growth and migration in hepatocellular carcinoma via activation of NOTCH2 signaling. Cell Death Dis 9(5):487. https://doi.org/10.1038/s41419-018-0554-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Z, Hu X, Kuang J, Liao J, Yuan Q (2020) LncRNA DRAIC inhibits proliferation and metastasis of gastric cancer cells through interfering with NFRKB deubiquitination mediated by UCHL5. Cell Mol Biol Lett 25:29. https://doi.org/10.1186/s11658-020-00221-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang XM, Liu Y, Fan YX, Liu Z, Yuan QL, Jia M, Geng ZS, Gu L, Lu XB (2018) LncRNA PTCSC3 affects drug resistance of anaplastic thyroid cancer through STAT3/INO80 pathway. Cancer Biol Ther 19(7):590–597. https://doi.org/10.1080/15384047.2018.1449610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chang CC, Liu TY, Lee YT, Chen YC, Yeh KT, Lee CC, Chen YL, Lin PC, Chang YS, Chan WL, Liu TC, Chang JG (2018) Genome-wide analysis of lncRNAs in 3'-untranslated regions: CR933609 acts as a decoy to protect the INO80D gene. Int J Oncol 53(1):417–433. https://doi.org/10.3892/ijo.2018.4398

    Article  CAS  PubMed  Google Scholar 

  40. Tian C, Deng Y, Jin Y, Shi S, Bi H (2018) Long non-coding RNA RNCR3 promotes prostate cancer progression through targeting miR-185-5p. Am J Transl Res 10(5):1562–1570

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Z, Fu C, Xu Q, Wei X (2017) Long non-coding RNA CASC7 inhibits the proliferation and migration of colon cancer cells via inhibiting microRNA-21. Biomed Pharmacother 95:1644–1653. https://doi.org/10.1016/j.biopha.2017.09.052

    Article  CAS  PubMed  Google Scholar 

  42. Xu J, Deng Y, Wang Y, Sun X, Chen S, Fu G (2020) SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway. Cell Prolif 53(2):e12738. https://doi.org/10.1111/cpr.12738

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, Li N, Fu J, Zhou W (2020) Long noncoding RNA HOTAIR promotes medulloblastoma growth, migration and invasion by sponging miR-1/miR-206 and targeting YY1. Biomed Pharmacother 124:109887. https://doi.org/10.1016/j.biopha.2020.109887

    Article  CAS  PubMed  Google Scholar 

  44. Dong X, Xu X, Guan Y (2020) LncRNA LINC00899 promotes progression of acute myeloid leukaemia by modulating miR-744-3p/YY1 signalling. Cell Biochem Funct. https://doi.org/10.1002/cbf.3521

    Article  PubMed  Google Scholar 

  45. You G, Zhou C, Xuan W (2020) LncRNA LINC00668 promotes cell proliferation, migration, invasion ability and EMT process in hepatocellular carcinoma by targeting miR-532-5p/YY1 axis. Biosci Rep. https://doi.org/10.1042/bsr20192697

    Article  PubMed  PubMed Central  Google Scholar 

  46. Aydin OZ, Vermeulen W, Lans H (2014) ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle 13(19):3016–3025. https://doi.org/10.4161/15384101.2014.956551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kazakevych J, Denizot J, Liebert A, Portovedo M, Mosavie M, Jain P, Stellato C, Fraser C, Correa RO, Celestine M, Mattiuz R, Okkenhaug H, Miller JR, Vinolo MAR, Veldhoen M, Varga-Weisz P (2020) Smarcad1 mediates microbiota-induced inflammation in mouse and coordinates gene expression in the intestinal epithelium. Genome Biol 21(1):64. https://doi.org/10.1186/s13059-020-01976-7

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kollarovic G, Topping CE, Shaw EP, Chambers AL (2020) The human HELLS chromatin remodelling protein promotes end resection to facilitate homologous recombination and contributes to DSB repair within heterochromatin. Nucleic Acids Res 48(4):1872–1885. https://doi.org/10.1093/nar/gkz1146

    Article  CAS  PubMed  Google Scholar 

  49. Jenness C, Giunta S, Muller MM, Kimura H, Muir TW, Funabiki H (2018) HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome. Proc Natl Acad Sci USA 115(5):E876–E885. https://doi.org/10.1073/pnas.1717509115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feng E, Batenburg NL, Walker JR, Ho A, Mitchell TRH, Qin J, Zhu XD (2020) CSB cooperates with SMARCAL1 to maintain telomere stability in ALT cells. J Cell Sci. https://doi.org/10.1242/jcs.234914

    Article  PubMed  Google Scholar 

  51. Oh YS, Gao P, Lee KW, Ceglia I, Seo JS, Zhang X, Ahn JH, Chait BT, Patel DJ, Kim Y, Greengard P (2013) SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant action. Cell 152(4):831–843. https://doi.org/10.1016/j.cell.2013.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ji JH, Min S, Chae S, Ha GH, Kim Y, Park YJ, Lee CW, Cho H (2019) De novo phosphorylation of H2AX by WSTF regulates transcription-coupled homologous recombination repair. Nucleic Acids Res 47(12):6299–6314. https://doi.org/10.1093/nar/gkz309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee SK, Park EJ, Lee HS, Lee YS, Kwon J (2012) Genome-wide screen of human bromodomain-containing proteins identifies Cecr2 as a novel DNA damage response protein. Mol Cells 34(1):85–91. https://doi.org/10.1007/s10059-012-0112-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Corujo D, Buschbeck M (2018) Post-translational modifications of H2A histone variants and their role in cancer. Cancers (Basel). https://doi.org/10.3390/cancers10030059

    Article  Google Scholar 

  55. Klement K, Luijsterburg MS, Pinder JB, Cena CS, Del Nero V, Wintersinger CM, Dellaire G, van Attikum H, Goodarzi AA (2014) Opposing ISWI- and CHD-class chromatin remodeling activities orchestrate heterochromatic DNA repair. J Cell Biol 207(6):717–733. https://doi.org/10.1083/jcb.201405077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scacchetti A, Brueckner L, Jain D, Schauer T, Zhang X, Schnorrer F, van Steensel B, Straub T, Becker PB (2018) CHRAC/ACF contribute to the repressive ground state of chromatin. Life Sci Alliance 1(1):e201800024. https://doi.org/10.26508/lsa.201800024

    Article  PubMed  PubMed Central  Google Scholar 

  57. Alkhatib SG, Landry JW (2011) The nucleosome remodeling factor. FEBS Lett 585(20):3197–3207. https://doi.org/10.1016/j.febslet.2011.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu B, Ye B, Yang L, Zhu X, Huang G, Zhu P, Du Y, Wu J, Qin X, Chen R, Tian Y, Fan Z (2017) Long noncoding RNA lncKdm2b is required for ILC3 maintenance by initiation of Zfp292 expression. Nat Immunol 18(5):499–508. https://doi.org/10.1038/ni.3712

    Article  CAS  PubMed  Google Scholar 

  59. Ye B, Liu B, Yang L, Zhu X, Zhang D, Wu W, Zhu P, Wang Y, Wang S, Xia P, Du Y, Meng S, Huang G, Wu J, Chen R, Tian Y, Fan Z (2018) LncKdm2b controls self-renewal of embryonic stem cells via activating expression of transcription factor Zbtb3. EMBO J. https://doi.org/10.15252/embj.201797174

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li Y, Li J, Luo M, Zhou C, Shi X, Yang W, Lu Z, Chen Z, Sun N, He J (2018) Novel long noncoding RNA NMR promotes tumor progression via NSUN2 and BPTF in esophageal squamous cell carcinoma. Cancer Lett 430:57–66. https://doi.org/10.1016/j.canlet.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  61. Liu T, Han Z, Li H, Zhu Y, Sun Z, Zhu A (2018) LncRNA DLEU1 contributes to colorectal cancer progression via activation of KPNA3. Mol Cancer 17(1):118. https://doi.org/10.1186/s12943-018-0873-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu YW, Guo FX, Xu YJ, Li P, Lu ZF, McVey DG, Zheng L, Wang Q, Ye JH, Kang CM, Wu SG, Zhao JJ, Ma X, Yang Z, Fang FC, Qiu YR, Xu BM, Xiao L, Wu Q, Wu LM, Ding L, Webb TR, Samani NJ, Ye S (2019) Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest 129(3):1115–1128. https://doi.org/10.1172/jci98230

    Article  PubMed  PubMed Central  Google Scholar 

  63. Guetg C, Scheifele F, Rosenthal F, Hottiger MO, Santoro R (2012) Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA. Mol Cell 45(6):790–800. https://doi.org/10.1016/j.molcel.2012.01.024

    Article  CAS  PubMed  Google Scholar 

  64. Pavlaki I, Alammari F, Sun B, Clark N, Sirey T, Lee S, Woodcock DJ, Ponting CP, Szele FG, Vance KW (2018) The long non-coding RNA Paupar promotes KAP1-dependent chromatin changes and regulates olfactory bulb neurogenesis. EMBO J. https://doi.org/10.15252/embj.201798219

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fragliasso V, Verma A, Manzotti G, Tameni A, Bareja R, Heavican TB, Iqbal J, Wang R, Fiore D, Mularoni V, Chan WC, Lhoumaud P, Skok J, Zanetti E, Merli F, Ciarrocchi A, Elemento O, Inghirami G (2020) The novel lncRNA BlackMamba controls the neoplastic phenotype of ALK(-) anaplastic large cell lymphoma by regulating the DNA helicase HELLS. Leukemia. https://doi.org/10.1038/s41375-020-0754-8

    Article  PubMed  Google Scholar 

  66. Li D, Jiang X, Zhang X, Cao G, Wang D, Chen Z (2019) Long noncoding RNA FGD5-AS1 promotes colorectal cancer cell proliferation, migration, and invasion through upregulating CDCA7 via sponging miR-302e. Vitro Cell Dev Biol Anim 55(8):577–585. https://doi.org/10.1007/s11626-019-00376-x

    Article  CAS  Google Scholar 

  67. Mills AA (2017) The chromodomain helicase DNA-binding chromatin remodelers: family traits that protect from and promote cancer. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a026450

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhou J, Li J, Serafim RB, Ketchum S, Ferreira CG, Liu JC, Coe KA, Price BD, Yusufzai T (2018) Human CHD1 is required for early DNA-damage signaling and is uniquely regulated by its N terminus. Nucleic Acids Res 46(8):3891–3905. https://doi.org/10.1093/nar/gky128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kelley DE, Stokes DG, Perry RP (1999) CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma 108(1):10–25. https://doi.org/10.1007/s004120050347

    Article  CAS  PubMed  Google Scholar 

  70. Tai HH, Geisterfer M, Bell JC, Moniwa M, Davie JR, Boucher L, McBurney MW (2003) CHD1 associates with NCoR and histone deacetylase as well as with RNA splicing proteins. Biochem Biophys Res Commun 308(1):170–176. https://doi.org/10.1016/s0006-291x(03)01354-8

    Article  CAS  PubMed  Google Scholar 

  71. Skene PJ, Hernandez AE, Groudine M, Henikoff S (2014) The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. Elife 3:e02042. https://doi.org/10.7554/eLife.02042

    Article  PubMed  PubMed Central  Google Scholar 

  72. Luijsterburg MS, de Krijger I, Wiegant WW, Shah RG, Smeenk G, de Groot AJL, Pines A, Vertegaal ACO, Jacobs JJL, Shah GM, van Attikum H (2016) PARP1 links CHD2-mediated chromatin expansion and H3.3 deposition to DNA repair by non-homologous end-joining. Mol Cell 61(4):547–562. https://doi.org/10.1016/j.molcel.2016.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martire S, Gogate AA, Whitmill A, Tafessu A, Nguyen J, Teng YC, Tastemel M, Banaszynski LA (2019) Phosphorylation of histone H3.3 at serine 31 promotes p300 activity and enhancer acetylation. Nat Genet 51(6):941–946. https://doi.org/10.1038/s41588-019-0428-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21(12):1519–1529. https://doi.org/10.1101/gad.1547707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Leighton G, Williams DC Jr (2019) The methyl-CpG-binding domain 2 and 3 proteins and formation of the nucleosome remodeling and deacetylase complex. J Mol Biol. https://doi.org/10.1016/j.jmb.2019.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rother MB, van Attikum H (2017) DNA repair goes hip-hop: SMARCA and CHD chromatin remodellers join the break dance. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2016.0285

    Article  PubMed  PubMed Central  Google Scholar 

  77. Manning BJ, Yusufzai T (2017) The ATP-dependent chromatin remodeling enzymes CHD6, CHD7, and CHD8 exhibit distinct nucleosome binding and remodeling activities. J Biol Chem 292(28):11927–11936. https://doi.org/10.1074/jbc.M117.779470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Moore S, Berger ND, Luijsterburg MS, Piett CG, Stanley FKT, Schrader CU, Fang S, Chan JA, Schriemer DC, Nagel ZD, van Attikum H, Goodarzi AA (2019) The CHD6 chromatin remodeler is an oxidative DNA damage response factor. Nat Commun 10(1):241. https://doi.org/10.1038/s41467-018-08111-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang CP, Zhao Y, Swigut T, Wysocka J (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463(7283):958–962. https://doi.org/10.1038/nature08733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nishiyama M, Skoultchi AI, Nakayama KI (2012) Histone H1 recruitment by CHD8 is essential for suppression of the Wnt-β-catenin signaling pathway. Mol Cell Biol 32(2):501–512. https://doi.org/10.1128/MCB.06409-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shooshtarizadeh P, Helness A, Vadnais C, Brouwer N, Beauchemin H, Chen R, Bagci H, Staal FJT, Cote JF, Moroy T (2019) Gfi1b regulates the level of Wnt/β-catenin signaling in hematopoietic stem cells and megakaryocytes. Nat Commun 10(1):1270. https://doi.org/10.1038/s41467-019-09273-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen C, Ipsaro JJ, Shi J, Milazzo JP, Wang E, Roe JS, Suzuki Y, Pappin DJ, Joshua-Tor L, Vakoc CR (2015) NSD3-short is an adaptor protein that couples BRD4 to the CHD8 chromatin remodeler. Mol Cell 60(6):847–859. https://doi.org/10.1016/j.molcel.2015.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fang M, Ou J, Hutchinson L, Green MR (2014) The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG Island Methylator phenotype. Mol Cell 55(6):904–915. https://doi.org/10.1016/j.molcel.2014.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao C, Dong C, Frah M, Deng Y, Marie C, Zhang F, Xu L, Ma Z, Dong X, Lin Y, Koenig S, Nait-Oumesmar B, Martin DM, Wu LN, Xin M, Zhou W, Parras C, Lu QR (2018) Dual requirement of CHD8 for chromatin landscape establishment and histone methyltransferase recruitment to promote CNS myelination and repair. Dev Cell 45(6):753–768. https://doi.org/10.1016/j.devcel.2018.05.022(e758)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yates JA, Menon T, Thompson BA, Bochar DA (2010) Regulation of HOXA2 gene expression by the ATP-dependent chromatin remodeling enzyme CHD8. FEBS Lett 584(4):689–693. https://doi.org/10.1016/j.febslet.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  86. Batsukh T, Schulz Y, Wolf S, Rabe TI, Oellerich T, Urlaub H, Schaefer IM, Pauli S (2012) Identification and characterization of FAM124B as a novel component of a CHD7 and CHD8 containing complex. PLoS ONE 7(12):e52640. https://doi.org/10.1371/journal.pone.0052640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rom A, Melamed L, Gil N, Goldrich MJ, Kadir R, Golan M, Biton I, Perry RB, Ulitsky I (2019) Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat Commun 10(1):5092. https://doi.org/10.1038/s41467-019-13075-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zeng Z, Xu FY, Zheng H, Cheng P, Chen QY, Ye Z, Zhong JX, Deng SJ, Liu ML, Huang K, Li Q, Li W, Hu YH, Wang F, Wang CY, Zhao G (2019) LncRNA-MTA2TR functions as a promoter in pancreatic cancer via driving deacetylation-dependent accumulation of HIF-1α. Theranostics 9(18):5298–5314. https://doi.org/10.7150/thno.34559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang AH, Zhao JM, Du J, Pang QX, Wang MQ (2019) Long noncoding RNA LUCAT1 promotes cervical cancer cell proliferation and invasion by upregulating MTA1. Eur Rev Med Pharmacol Sci 23(16):6824–6829. https://doi.org/10.26355/eurrev_201908_18721

    Article  PubMed  Google Scholar 

  90. Luzón-Toro B, Fernández RM, Martos-Martínez JM, Rubio-Manzanares-Dorado M, Antiñolo G, Borrego S (2019) LncRNA LUCAT1 as a novel prognostic biomarker for patients with papillary thyroid cancer. Sci Rep 9(1):14374. https://doi.org/10.1038/s41598-019-50913-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhu J, Gu W, Yu C (2020) MATN1-AS1 promotes glioma progression by functioning as ceRNA of miR-200b/c/429 to regulate CHD1 expression. Cell Prolif 53(1):e12700. https://doi.org/10.1111/cpr.12700

    Article  PubMed  Google Scholar 

  92. Lu M, Ding N, Zhuang S, Li Y (2020) LINC01410/miR-23c/CHD7 functions as a ceRNA network to affect the prognosis of patients with endometrial cancer and strengthen the malignant properties of endometrial cancer cells. Mol Cell Biochem. https://doi.org/10.1007/s11010-020-03723-9

    Article  PubMed  Google Scholar 

  93. Wang CH, Li QY, Nie L, Ma J, Yao CJ, Chen FP (2020) LncRNA ANRIL promotes cell proliferation, migration and invasion during acute myeloid leukemia pathogenesis via negatively regulating miR-34a. Int J Biochem Cell Biol 119:105666. https://doi.org/10.1016/j.biocel.2019.105666

    Article  CAS  PubMed  Google Scholar 

  94. Dai W, Dai JL, Tang MH, Ye MS, Fang S (2019) lncRNA-SNHG15 accelerates the development of hepatocellular carcinoma by targeting miR-490-3p/histone deacetylase 2 axis. World J Gastroenterol 25(38):5789–5799. https://doi.org/10.3748/wjg.v25.i38.5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu C, Wang X, Zhao X, Xin Y, Liu C (2020) Long non-coding RNA ARAP1-AS1 accelerates cell proliferation and migration in breast cancer through miR-2110/HDAC2/PLIN1 axis. Biosci Rep. https://doi.org/10.1042/bsr20191764

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tao D, Zhang Z, Liu X, Zhang Z, Fu Y, Zhang P, Yuan H, Liu L, Cheng J, Jiang H (2020) LncRNA HOTAIR promotes the invasion and metastasis of oral squamous cell carcinoma through metastasis-associated gene 2. Mol Carcinog 59(4):353–364. https://doi.org/10.1002/mc.23159

    Article  CAS  PubMed  Google Scholar 

  97. Zhou Q, Huang XR, Yu J, Yu X, Lan HY (2015) Long noncoding RNA Arid2-IR is a novel therapeutic target for renal inflammation. Mol Ther 23(6):1034–1043. https://doi.org/10.1038/mt.2015.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yuan H, Chen Z, Bai S, Wei H, Wang Y, Ji R, Guo Q, Li Q, Ye Y, Wu J, Zhou Y, Qiao L (2018) Molecular mechanisms of lncRNA SMARCC2/miR-551b-3p/TMPRSS4 axis in gastric cancer. Cancer Lett 418:84–96. https://doi.org/10.1016/j.canlet.2018.01.032

    Article  CAS  PubMed  Google Scholar 

  99. Ge Y, Zhang R, Feng Y, Li H (2020) Mbd2 mediates retinal cell apoptosis by targeting the lncRNA Mbd2-AL1/miR-188-3p/Traf3 axis in ischemia/reperfusion injury. Mol Ther Nucleic Acids 19:1250–1265. https://doi.org/10.1016/j.omtn.2020.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu J, Zhang X, Chen K, Cheng Y, Liu S, Xia M, Chen Y, Zhu H, Li Z, Cao X (2019) CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 50(3):600–615.e615. https://doi.org/10.1016/j.immuni.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  101. Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21(3):396–420. https://doi.org/10.1038/cr.2011.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee RS, Roberts CW (2013) Linking the SWI/SNF complex to prostate cancer. Nat Genet 45(11):1268–1269. https://doi.org/10.1038/ng.2805

    Article  CAS  PubMed  Google Scholar 

  103. Hasan N, Ahuja N (2019) The emerging roles of ATP-dependent chromatin remodeling complexes in pancreatic cancer. Cancers (Basel). https://doi.org/10.3390/cancers11121859

    Article  Google Scholar 

  104. Li X, Fu XD (2019) Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat Rev Genet 20(9):503–519. https://doi.org/10.1038/s41576-019-0135-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Druliner BR, Vera D, Johnson R, Ruan X, Apone LM, Dimalanta ET, Stewart FJ, Boardman L, Dennis JH (2016) Comprehensive nucleosome mapping of the human genome in cancer progression. Oncotarget 7(12):13429–13445. https://doi.org/10.18632/oncotarget.6811

    Article  PubMed  Google Scholar 

  106. Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, Raychowdhury R, Adamson B, Norman TM, Lander ES, Weissman JS, Friedman N, Regev A (2016) Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167(7):1853–1866.e1817. https://doi.org/10.1016/j.cell.2016.11.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, Salame TM, Tanay A, van Oudenaarden A, Amit I (2016) Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167(7):1883–1896.e1815. https://doi.org/10.1016/j.cell.2016.11.039

    Article  CAS  PubMed  Google Scholar 

  108. Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J, Schuster LC, Kuchler A, Alpar D, Bock C (2017) Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods 14(3):297–301. https://doi.org/10.1038/nmeth.4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu SJ, Nowakowski TJ, Pollen AA, Lui JH, Horlbeck MA, Attenello FJ, He D, Weissman JS, Kriegstein AR, Diaz AA, Lim DA (2016) Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol. https://doi.org/10.1186/s13059-13016-10932-13051(10.1186/s13059-016-0932-1)

    Article  PubMed  PubMed Central  Google Scholar 

  110. See K, Tan WLW, Lim EH, Tiang Z, Lee LT, Li PYQ, Luu TDA, Ackers-Johnson M, Foo RS (2017) Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat Commun 8(1):225. https://doi.org/10.1038/s41467-017-00319-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ortiz V, Yu M (2018) Analyzing circulating tumor cells one at a time. Trends Cell Biol 28(10):764–775. https://doi.org/10.1016/j.tcb.2018.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  112. Arun G, Diermeier SD, Spector DL (2018) Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med 24(3):257–277. https://doi.org/10.1016/j.molmed.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rezazadeh S, Yang D, Tombline G, Simon M, Regan SP, Seluanov A, Gorbunova V (2019) SIRT6 promotes transcription of a subset of NRF2 targets by mono-ADP-ribosylating BAF170. Nucleic Acids Res 47(15):7914–7928. https://doi.org/10.1093/nar/gkz528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Porter EG, Dykhuizen EC (2017) Individual bromodomains of polybromo-1 contribute to chromatin association and tumor suppression in clear cell renal carcinoma. J Biol Chem 292(7):2601–2610. https://doi.org/10.1074/jbc.M116.746875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Moody RR, Lo MC, Meagher JL, Lin CC, Stevers NO, Tinsley SL, Jung I, Matvekas A, Stuckey JA, Sun D (2018) Probing the interaction between the histone methyltransferase/deacetylase subunit RBBP4/7 and the transcription factor BCL11A in epigenetic complexes. J Biol Chem 293(6):2125–2136. https://doi.org/10.1074/jbc.M117.811463

    Article  CAS  PubMed  Google Scholar 

  116. Burrows AE, Smogorzewska A, Elledge SJ (2010) Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc Natl Acad Sci USA 107(32):14280–14285. https://doi.org/10.1073/pnas.1009559107

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gatchalian J, Malik S, Ho J, Lee DS, Kelso TWR, Shokhirev MN, Dixon JR, Hargreaves DC (2018) A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun 9(1):5139. https://doi.org/10.1038/s41467-018-07528-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang RR, Pan R, Zhang W, Fu J, Lin JD, Meng ZX (2018) The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control. Protein Cell 9(2):207–215. https://doi.org/10.1007/s13238-017-0442-2

    Article  CAS  PubMed  Google Scholar 

  119. Harada A, Ohkawa Y, Imbalzano AN (2017) Temporal regulation of chromatin during myoblast differentiation. Semin Cell Dev Biol 72:77–86. https://doi.org/10.1016/j.semcdb.2017.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McBride MJ, Pulice JL, Beird HC, Ingram DR, D'Avino AR, Shern JF, Charville GW, Hornick JL, Nakayama RT, Garcia-Rivera EM, Araujo DM, Wang WL, Tsai JW, Yeagley M, Wagner AJ, Futreal PA, Khan J, Lazar AJ, Kadoch C (2018) The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell 33(6):1128–1141. https://doi.org/10.1016/j.ccell.2018.05.002(e1127)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Willhoft O, Wigley DB (2019) INO80 and SWR1 complexes: the non-identical twins of chromatin remodelling. Curr Opin Struct Biol 61:50–58. https://doi.org/10.1016/j.sbi.2019.09.002

    Article  CAS  PubMed  Google Scholar 

  122. Vella P, Barozzi I, Cuomo A, Bonaldi T, Pasini D (2012) Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells. Nucleic Acids Res 40(8):3403–3418. https://doi.org/10.1093/nar/gkr1290

    Article  CAS  PubMed  Google Scholar 

  123. Cox E, Hwang W, Uzoma I, Hu J, Guzzo CM, Jeong J, Matunis MJ, Qian J, Zhu H, Blackshaw S (2017) Global analysis of SUMO-binding proteins identifies SUMOylation as a key regulator of the INO80 chromatin remodeling complex. Mol Cell Proteomics 16(5):812–823. https://doi.org/10.1074/mcp.M116.063719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sahtoe DD, van Dijk WJ, El Oualid F, Ekkebus R, Ovaa H, Sixma TK (2015) Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol Cell 57(5):887–900. https://doi.org/10.1016/j.molcel.2014.12.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liang X, Shan S, Pan L, Zhao J, Ranjan A, Wang F, Zhang Z, Huang Y, Feng H, Wei D, Huang L, Liu X, Zhong Q, Lou J, Li G, Wu C, Zhou Z (2016) Structural basis of H2A.Z recognition by SRCAP chromatin-remodeling subunit YL1. Nat Struct Mol Biol 23(4):317–323. https://doi.org/10.1038/nsmb.3190

    Article  CAS  PubMed  Google Scholar 

  126. Cho HJ, Li H, Linhares BM, Kim E, Ndoj J, Miao H, Grembecka J, Cierpicki T (2018) GAS41 recognizes diacetylated Histone H3 through a bivalent binding mode. ACS Chem Biol 13(9):2739–2746. https://doi.org/10.1021/acschembio.8b00674

    Article  CAS  PubMed  Google Scholar 

  127. Wang Y, Jin J, Chung MWH, Feng L, Sun H, Hao Q (2018) Identification of the YEATS domain of GAS41 as a pH-dependent reader of histone succinylation. Proc Natl Acad Sci USA 115(10):2365–2370. https://doi.org/10.1073/pnas.1717664115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hota SK, Bruneau BG (2016) ATP-dependent chromatin remodeling during mammalian development. Development 143(16):2882–2897. https://doi.org/10.1242/dev.128892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ding D, Bergmaier P, Sachs P, Klangwart M, Ruckert T, Bartels N, Demmers J, Dekker M, Poot RA, Mermoud JE (2018) The CUE1 domain of the SNF2-like chromatin remodeler SMARCAD1 mediates its association with KRAB-associated protein 1 (KAP1) and KAP1 target genes. J Biol Chem 293(8):2711–2724. https://doi.org/10.1074/jbc.RA117.000959

    Article  CAS  PubMed  Google Scholar 

  130. Anosova I, Melnik S, Tripsianes K, Kateb F, Grummt I, Sattler M (2015) A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes. Nucleic Acids Res 43(10):5208–5220. https://doi.org/10.1093/nar/gkv365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tallant C, Valentini E, Fedorov O, Overvoorde L, Ferguson FM, Filippakopoulos P, Svergun DI, Knapp S, Ciulli A (2015) Molecular basis of histone tail recognition by human TIP5 PHD finger and bromodomain of the chromatin remodeling complex NoRC. Structure 23(1):80–92. https://doi.org/10.1016/j.str.2014.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Helfricht A, Wiegant WW, Thijssen PE, Vertegaal AC, Luijsterburg MS, van Attikum H (2013) Remodeling and spacing factor 1 (RSF1) deposits centromere proteins at DNA double-strand breaks to promote non-homologous end-joining. Cell Cycle 12(18):3070–3082. https://doi.org/10.4161/cc.26033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bellelli R, Belan O, Pye VE, Clement C, Maslen SL, Skehel JM, Cherepanov P, Almouzni G, Boulton SJ (2018) POLE3-POLE4 is a Histone H3–H4 chaperone that maintains chromatin integrity during DNA replication. Mol Cell 72(1):112–126. https://doi.org/10.1016/j.molcel.2018.08.043(e115)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lee JS, Garrett AS, Yen K, Takahashi YH, Hu D, Jackson J, Seidel C, Pugh BF, Shilatifard A (2012) Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. Genes Dev 26(9):914–919. https://doi.org/10.1101/gad.186841.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Egan Chris M, Nyman U, Skotte J, Streubel G, Turner S, O’Connell David J, Rraklli V, Dolan Michael J, Chadderton N, Hansen K, Farrar Gwyneth J, Helin K, Holmberg J, Bracken Adrian P (2013) CHD5 is required for neurogenesis and has a dual role in facilitating gene expression and polycomb gene repression. Dev Cell 26(3):223–236. https://doi.org/10.1016/j.devcel.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  136. Torchy MP, Hamiche A, Klaholz BP (2015) Structure and function insights into the NuRD chromatin remodeling complex. Cell Mol Life Sci 72(13):2491–2507. https://doi.org/10.1007/s00018-015-1880-8

    Article  CAS  PubMed  Google Scholar 

  137. Zhang W, Duan N, Zhang Q, Song T, Li Z, Chen X, Wang K (2018) The intracellular NADH level regulates atrophic nonunion pathogenesis through the CtBP2-p300-Runx2 transcriptional complex. Int J Biol Sci 14(14):2023–2036. https://doi.org/10.7150/ijbs.28302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cajigas I, Leib DE, Cochrane J, Luo H, Swyter KR, Chen S, Clark BS, Thompson J, Yates JR 3rd, Kingston RE, Kohtz JD (2015) Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling. Development 142(15):2641–2652. https://doi.org/10.1242/dev.126318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang X, Gong Y, Jin BO, Wu C, Yang J, Wang LE, Zhang Z, Mao Z (2014) Long non-coding RNA urothelial carcinoma associated 1 induces cell replication by inhibiting BRG1 in 5637 cells. Oncol Rep 32(3):1281–1290. https://doi.org/10.3892/or.2014.3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Guo X, Zhang Y, Mayakonda A, Madan V, Ding LW, Lin LH, Zia S, Gery S, Tyner JW, Zhou W, Yin D, Lin DC, Koeffler HP (2018) ARID1A and CEBPalpha cooperatively inhibit UCA1 transcription in breast cancer. Oncogene. https://doi.org/10.1038/s41388-018-0371-4

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zhang L, Li DQ (2019) MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Res 47(16):8502–8520. https://doi.org/10.1093/nar/gkz545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ming N, Na HST, He JL, Meng QT, Xia ZY (2019) Propofol alleviates oxidative stress via upregulating lncRNA-TUG1/Brg1 pathway in hypoxia/reoxygenation hepatic cells. J Biochem 166(5):415–421. https://doi.org/10.1093/jb/mvz054

    Article  CAS  PubMed  Google Scholar 

  143. Chang CP, Han P (2016) Epigenetic and lncRNA regulation of cardiac pathophysiology. Biochim Biophys Acta 1863(7 Pt B):1767–1771. https://doi.org/10.1016/j.bbamcr.2016.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhou X, Rao Y, Sun Q, Liu Y, Chen J, Bu W (2019) Long noncoding RNA CPS1-IT1 suppresses melanoma cell metastasis through inhibiting Cyr61 via competitively binding to BRG1. J Cell Physiol 234(12):22017–22027. https://doi.org/10.1002/jcp.28764

    Article  CAS  PubMed  Google Scholar 

  145. Kawaguchi T, Tanigawa A, Naganuma T, Ohkawa Y, Souquere S, Pierron G, Hirose T (2015) SWI/SNF chromatin-remodeling complexes function in noncoding RNA-dependent assembly of nuclear bodies. Proc Natl Acad Sci USA 112(14):4304–4309. https://doi.org/10.1073/pnas.1423819112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lino Cardenas CL, Kessinger CW, Cheng Y, MacDonald C, MacGillivray T, Ghoshhajra B, Huleihel L, Nuri S, Yeri AS, Jaffer FA, Kaminski N, Ellinor P, Weintraub NL, Malhotra R, Isselbacher EM, Lindsay ME (2018) An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun 9(1):1009. https://doi.org/10.1038/s41467-018-03394-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hu G, Gong AY, Wang Y, Ma S, Chen X, Chen J, Su CJ, Shibata A, Strauss-Soukup JK, Drescher KM, Chen XM (2016) LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. J Immunol 196(6):2799–2808

    Article  CAS  PubMed  Google Scholar 

  148. Liu X, Lu Y, Zhu J, Liu M, Xie M, Ye M, Li M, Wang S, Ming Z, Tong Q, Liu F, Zhou R (2019) A long noncoding RNA, antisense IL-7, promotes inflammatory gene transcription through facilitating histone acetylation and switch/sucrose nonfermentable chromatin remodeling. J Immunol 203(6):1548–1559. https://doi.org/10.4049/jimmunol.1900256

    Article  CAS  PubMed  Google Scholar 

  149. Chen Z, Gao Y, Yao L, Liu Y, Huang L, Yan Z, Zhao W, Zhu P, Weng H (2018) LncFZD6 initiates Wnt/beta-catenin and liver TIC self-renewal through BRG1-mediated FZD6 transcriptional activation. Oncogene 37(23):3098–3112. https://doi.org/10.1038/s41388-018-0203-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Imai-Sumida M, Dasgupta P, Kulkarni P, Shiina M, Hashimoto Y, Shahryari V, Majid S, Tanaka Y, Dahiya R, Yamamura S (2020) Genistein represses HOTAIR/chromatin remodeling pathways to suppress kidney cancer. Cell Physiol Biochem 54(1):53–70. https://doi.org/10.33594/000000205

    Article  CAS  PubMed  Google Scholar 

  151. Cheng S, Wang L, Deng CH, Du SC, Han ZG (2017) ARID1A represses hepatocellular carcinoma cell proliferation and migration through lncRNA MVIH. Biochem Biophys Res Commun 491(1):178–182. https://doi.org/10.1016/j.bbrc.2017.07.072

    Article  CAS  PubMed  Google Scholar 

  152. Fang C, He W, Xu T, Dai J, Xu L, Sun F (2019) Upregulation of lncRNA DGCR5 correlates with better prognosis and inhibits bladder cancer progression via transcriptionally facilitating P21 expression. J Cell Physiol 234(5):6254–6262. https://doi.org/10.1002/jcp.27356

    Article  CAS  PubMed  Google Scholar 

  153. Guo X, Wei Y, Wang Z, Liu W, Yang Y, Yu X, He J (2018) LncRNA LINC00163 upregulation suppresses lung cancer development though transcriptionally increasing TCF21 expression. Am J Cancer Res 8(12):2494–2506

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Jegu T, Blum R, Cochrane JC, Yang L, Wang CY, Gilles ME, Colognori D, Szanto A, Marr SK, Kingston RE, Lee JT (2019) Xist RNA antagonizes the SWI/SNF chromatin remodeler BRG1 on the inactive X chromosome. Nat Struct Mol Biol 26(2):96–109. https://doi.org/10.1038/s41594-018-0176-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Leisegang MS, Bibli SI, Gunther S, Pfluger-Muller B, Oo JA, Hoper C, Seredinski S, Yekelchyk M, Schmitz-Rixen T, Schurmann C, Hu J, Looso M, Sigala F, Boon RA, Fleming I, Brandes RP (2019) Pleiotropic effects of laminar flow and statins depend on the Kruppel-like factor-induced lncRNA MANTIS. Eur Heart J 40(30):2523–2533. https://doi.org/10.1093/eurheartj/ehz393

    Article  CAS  PubMed  Google Scholar 

  156. Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, Vergara IA, Davicioni E, Erho N, Ghadessi M, Jenkins RB, Triche TJ, Malik R, Bedenis R, McGregor N, Ma T, Chen W, Han S, Jing X, Cao X, Wang X, Chandler B, Yan W, Siddiqui J, Kunju LP, Dhanasekaran SM, Pienta KJ, Feng FY, Chinnaiyan AM (2013) The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet 45(11):1392–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Katsushima K, Natsume A, Ohka F, Shinjo K, Hatanaka A, Ichimura N, Sato S, Takahashi S, Kimura H, Totoki Y, Shibata T, Naito M, Kim HJ, Miyata K, Kataoka K, Kondo Y (2016) Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun 7:13616. https://doi.org/10.1038/ncomms13616

    Article  PubMed  PubMed Central  Google Scholar 

  158. Rong Z, Wang Z, Wang X, Qin C, Geng W (2020) Molecular interplay between linc01134 and YY1 dictates hepatocellular carcinoma progression. J Exp Clin Cancer Res 39(1):61. https://doi.org/10.1186/s13046-020-01551-9

    Article  PubMed  PubMed Central  Google Scholar 

  159. Savic N, Bar D, Leone S, Frommel SC, Weber FA, Vollenweider E, Ferrari E, Ziegler U, Kaech A, Shakhova O, Cinelli P, Santoro R (2014) lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs. Cell Stem Cell 15(6):720–734. https://doi.org/10.1016/j.stem.2014.10.00

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from “Institut National de la Santé et de la Recherche Médicale” (Inserm), “Centre National de la Recherche Scientifique” (CNRS) and the “Cancéropôle Nord-Ouest” (Bourse Emergence 2019) and “Ligue Nationale contre le Cancer” (Comité Départemental CD59, CD80). The authors declare no conflict of interest. The funders had no role in the writing of the manuscript, or in the decision to publish this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette Neve.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neve, B., Jonckheere, N., Vincent, A. et al. Long non-coding RNAs: the tentacles of chromatin remodeler complexes. Cell. Mol. Life Sci. 78, 1139–1161 (2021). https://doi.org/10.1007/s00018-020-03646-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03646-0

Keywords

Navigation