Skip to main content
Log in

EPR Spectroscopy of \(^{53}\hbox {Cr}^{3+}\) Monoisotopic Impurity Ions in a Single Crystal of Scandium Orthosilicate \(\hbox {Sc}_{2}\hbox {SiO}_{5}\)

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Monoisotopic \(^{53}\hbox {Cr}^{3+}\) impurity ions in scandium orthosilicate single crystal (\(\hbox {Sc}_2\hbox {SiO}_5\)) are studied by the method of electron paramagnetic resonance in the X-band frequencies. The directions of the main principal magnetic axes and the parameters of the effective spin Hamiltonian that describe the magnetic characteristics of the impurity centers of chromium, which replaces scandium in two structurally nonequivalent positions, are determined. It is shown that the orientation dependencies of the EPR spectra are well described by the second-order spin Hamiltonian corresponding to the orthorhombic symmetry of the local crystal field acting on the impurity ion. It was assumed that the g-tensor and the A-tensor determining the Zeeman energy of electronic levels in a magnetic field and the hyperfine interaction of electron and nuclear spins are isotropic, and the entire anisotropy of the EPR spectra is due to the anisotropy of the D-tensor, which describes the fine structure of electronic levels in a crystalline electric field. A strong dependence of the probability of “forbidden” transitions between hyperfine sublevels of electronic levels on the orientation of an external magnetic field is established. Moreover, for some orientations, the probability of “forbidden” transitions exceeds the probability of “allowed” transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Kück, Appl. Phys. B 72, 515 (2001). https://doi.org/10.1007/s003400100540

    Article  ADS  Google Scholar 

  2. R. Moncorge, Opt. Materials 63, 105 (2017). https://doi.org/10.1016/j.optmat.2016.05.060

    Article  ADS  Google Scholar 

  3. T. Maiman, Nature 6, 493 (1960). https://doi.org/10.1038/187493a0

    Article  ADS  Google Scholar 

  4. C. Deka, B.H.T. Chai, Y. Shimony, X.X. Zhang, E. Munin, M. Bass, Appl. Phys. Lett 61, 2141 (1992). https://doi.org/10.1063/1.108300

    Article  ADS  Google Scholar 

  5. J. Koetke, S. Kück, K. Petermann, G. Huber, G. Cerullo, M. Danailov, V. Magni, L. Qian, O. Svelto, Opt. Commun. 101, 195 (1993). https://doi.org/10.1016/0030-4018(93)90366-D

    Article  ADS  Google Scholar 

  6. V. Vazhenin, A. Potapov, G. Shakurov, A. Fokin, M.Y. Artyomov, V.A. Isaev, Phys. Solid State 60, 2039 (2018). https://doi.org/10.1134/S106378341810030X

    Article  ADS  Google Scholar 

  7. V. Tarasov, I. Yatsyk, R. Likerov, A. Shestakov, R. Eremina, Y. Zavartsev, S. Kutovoi, Opt. Materials 105, 109913 (2020). https://doi.org/10.1016/j.optmat.2020.109913

    Article  Google Scholar 

  8. M. Alba, P. Chain, T. Gonzalez-Carrascosa, J. Am. Ceram. Soc. 92, 487 (2009). https://doi.org/10.1111/j.1551-2916.2008.02877.x

    Article  Google Scholar 

  9. Y. Sun, T. Böttger, C. Thiel, R.L. Cone, Phys. Rev. B 77, 085124 (2008). https://doi.org/10.1103/PhysRevB.77.085124

    Article  ADS  Google Scholar 

  10. S. Stoll, A. Schweiger, J. Mag. Reson. 178, 42 (2006). https://doi.org/10.1016/j.jmr.2005.08.013

    Article  ADS  Google Scholar 

  11. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, 1970)

    Google Scholar 

  12. V. Tarasov, G. Shakurov, Appl. Magn. Reson. 2, 571 (1991). https://doi.org/10.1007/BF03166064

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to V. A. Shustov for the X-ray studies of the samples. This research was supported by the Russian Science Foundation, project No. 16-12-00041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Likerov.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.F., Eremina, R.M., Konov, K.B. et al. EPR Spectroscopy of \(^{53}\hbox {Cr}^{3+}\) Monoisotopic Impurity Ions in a Single Crystal of Scandium Orthosilicate \(\hbox {Sc}_{2}\hbox {SiO}_{5}\). Appl Magn Reson 52, 5–14 (2021). https://doi.org/10.1007/s00723-020-01225-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01225-x

Navigation