Skip to main content
Log in

Optimization of mechanical properties and electrical conductivity in Al–Mg–Si 6201 alloys with different Mg/Si ratios

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of the Mg/Si ratio and aging treatment on the strength and electrical conductivity of Al–Mg–Si 6201 conductor alloys were investigated. Four experimental alloys with different Mg/Si ratios of 2, 1.5, 1, and 0.86 and with a constant Mg level of 0.65 wt% were prepared. It was revealed that excessive Si (a low Mg/Si ratio) increased the peak strength, while the corresponding electrical conductivity decreased. To fulfill the minimum required electrical conductivity (52.5% IACS), the alloys with low Mg/Si ratios required a longer aging time after peak aging to improve electrical conductivity. The alloy with an Mg/Si ratio of ~1 was the best candidate, exhibiting the highest strength up to 54% IACS. On the high end of electrical conductivity (54–56% IACS), the alloy with an Mg/Si ratio of ~1.5 provides a better compromise between strength and electrical conductivity. Furthermore, the strengthening mechanisms and the factors influencing electrical conductivity were discussed for further optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Table 1:

Similar content being viewed by others

References

  1. L. Pan, K. Liu, F. Breton, and X. Grant Chen: Effect of Fe on microstructure and properties of 8xxx aluminum conductor alloys. J. Mater. Eng. Perform. 25, 5201 (2016).

    Article  CAS  Google Scholar 

  2. L. Pan, F.A. Mirza, K. Liu, and X.G. Chen: Effect of Fe-rich particles and solutes on the creep behaviour of 8xxx alloys. Mater. Sci. Technol. 33, 1130 (2016).

    Article  Google Scholar 

  3. L. Pan, K. Liu, F. Breton, and X.G. Chen: Effects of minor Cu and Mg additions on microstructure and material properties of 8xxx aluminum conductor alloys. J. Mater. Res. 32, 1094 (2017).

    Article  CAS  Google Scholar 

  4. S. Karabay: Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting. Mater. Des. 29, 1364 (2008).

    Article  CAS  Google Scholar 

  5. S. Karabay: Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors. Mater. Des. 27, 821 (2006).

    Article  CAS  Google Scholar 

  6. M.G.E. Cervantes, J.A. Ramos, and S.A. Montes: Influence of natural aging and cold deformation on the mechanical and electrical properties of 6201-T81 aluminum alloy wires. Mater. Res. Soc. Symp. Proc. 3 (2010).

  7. M. Iraizoz, N. Rossello, and M. Amado: Influence of solution heat treatment temperature in the final properties of AA6201 drawn wire. In Light Metals, M. Hyland, ed. Springer Cham, Florida (2016); p. 183.

    Google Scholar 

  8. Q. Zhao, Z. Qian, X. Cui, Y. Wu, and X. Liu: Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute Al–Mg–Si alloy. J. Alloys Compd. 666, 50 (2016).

    Article  CAS  Google Scholar 

  9. Y. Han, D. Shao, B.A. Chen, Z. Peng, Z.X. Zhu, Q. Zhang, X. Chen, G. Liu, and X.M. Li: Effect of Mg/Si ratio on the microstructure and hardness–conductivity relationship of ultrafine-grained Al–Mg–Si alloys. J. Mater. Sci. 52, 4445 (2016).

    Article  Google Scholar 

  10. R.Z. Valiev, M.Y. Murashkin, and I. Sabirov: A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scr. Mater. 76, 13 (2014).

    Article  CAS  Google Scholar 

  11. S. Jiang and R. Wang: Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al–Mg–Si–Sc alloys. J. Mater. Sci. Technol. 35, 1354 (2019).

    Article  Google Scholar 

  12. G.E. Totten and D.S. MacKenzie: Handbook of Aluminum, Vol. 1, Marcel Dekker, New York (2003).

  13. X. Sauvage, E.V. Bobruk, M.Y. Murashkin, Y. Nasedkina, N.A. Enikeev, and R.Z. Valiev: Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al–Mg–Si alloys. Acta Mater. 98, 355 (2015).

    Article  CAS  Google Scholar 

  14. C.H. Liu, J. Chen, Y.X. Lai, D.H. Zhu, Y. Gu, and J.H. Chen: Enhancing electrical conductivity and strength in Al alloys by modification of conventional thermo-mechanical process. Mater. Des. 87, 1 (2015).

    Article  CAS  Google Scholar 

  15. X. Xu, Z. Yang, Y. Ye, G. Wang, and X. He: Effects of various Mg/Si ratios on microstructure and performance property of Al–Mg–Si alloy cables. Mater. Charact. 119, 114 (2016).

    Article  CAS  Google Scholar 

  16. J. Buha, R.N. Lumley, A.G. Crosky, and K. Hono: Secondary precipitation in an Al–Mg–Si–Cu alloy. Acta Mater. 55, 3015 (2007).

    Article  CAS  Google Scholar 

  17. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46, 3893 (1998).

    Article  CAS  Google Scholar 

  18. L. Ding, Z. Jia, Z. Zhang, R.E. Sanders, Q. Liu, and G. Yang: The natural aging and precipitation hardening behaviour of Al–Mg–Si–Cu alloys with different Mg/Si ratios and Cu additions. Mater. Sci. Eng. A 627, 119 (2015).

    Article  CAS  Google Scholar 

  19. A.K. Gupta, D.J. Lloyd, and S.A. Court: Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater. Sci. Eng. A 316, 11 (2001).

    Article  Google Scholar 

  20. C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. Van Helvoort, and R. Holmestad: The effect of Cu on precipitation in Al–Mg–Si alloys. Philos. Mag. 87, 3385 (2007).

    Article  CAS  Google Scholar 

  21. K. Li, A. Béché, M. Song, G. Sha, X. Lu, K. Zhang, Y. Du, S.P. Ringer, and D. Schryvers: Atomistic structure of Cu-containing β ″precipitates in an Al–Mg–Si–Cu alloy. Scr. Mater. 75, 86 (2014).

    Article  Google Scholar 

  22. J.H. Chen, E. Costan, M.A. van Huis, Q. Xu, and H.W. Zandbergen: Atomic pillar-based nanoprecipitates strengthen Al–Mg–Si alloys. Science 312, 416 (2006).

    Article  CAS  Google Scholar 

  23. C.D. Marioara, S.J. Andersen, H.W. Zandbergen, and R. Holmestad: The influence of alloy composition on precipitates of the Al–Mg–Si system. Metall. Mater. Trans. A 36, 691 (2005).

    Google Scholar 

  24. F.U. Flores, D.N. Seidman, D.C. Dunand, and N.Q. Vo: Development of high-strength and high-electrical-conductivity aluminum alloys for power transmission conductors. Light Metals, F4, 247 (2018).

    Google Scholar 

  25. EN 50183 Standard. Conductors for overhead lines, aluminium magnesium silicon alloy wires (2000).

    Google Scholar 

  26. ASTM. Annual Book of ASTM Standards, Electrical Conductors (2002).

    Google Scholar 

  27. K. Teichmann, C.D. Marioara, S.J. Andersen, K.O. Pedersen, S. Gulbrandsen-Dahl, M. Kolar, R. Holmestad, and K. Marthinsen: HRTEM study of the effect of deformation on the early precipitation behaviour in an AA6060 Al–Mg–Si alloy. Philos. Mag. 91, 3744 (2011).

    Article  CAS  Google Scholar 

  28. R.S. Yassar, D.P. Field, and H. Weiland: The effect of predeformation on the β″ and β′ precipitates and the role of Q′ phase in an Al–Mg–Si alloy; AA6022. Scr. Mater. 53, 299 (2005).

    Article  CAS  Google Scholar 

  29. H. Nemour, D. Mourad Ibrahim, and A. Triki: The effect of heavy cold plastic deformation on the non-isothermal kinetics and the precipitation sequence of metastable phases in an Al–Mg–Si alloy. J. Therm. Anal. Calorim. 123, 19 (2015).

    Article  Google Scholar 

  30. D. Yin, Q. Xiao, Y. Chen, H. Liu, D. Yi, B. Wang, and S. Pan: Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy. Mater. Des. 95, 329 (2016).

    Article  CAS  Google Scholar 

  31. Deschamps A, Livet F, Bréchet Y: Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties, Acta Mater, 47, 281 (1998).

    Article  Google Scholar 

  32. Z. Li, Z. Zhang, and X.G. Chen: Improvement in the mechanical properties and creep resistance of Al–Mn–Mg 3004 alloy with Sc and Zr addition. Mater. Sci. Eng. A 729, 196 (2018).

    Article  CAS  Google Scholar 

  33. Y.J. Li, A.M.F. Muggerud, A. Olsen, and T. Furu: Precipitation of partially coherent α-Al(Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Mater. 60, 1004 (2012).

    Article  CAS  Google Scholar 

  34. J. Zhang, M. Ma, F. Shen, D. Yi, and B. Wang: Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al–Mg–Si alloy cables. Mater. Sci. Eng. A 710, 27 (2018).

    Article  CAS  Google Scholar 

  35. B. Raeisinia, W.J. Poole, and D.J. Lloyd: Examination of precipitation in the aluminum alloy AA6111 using electrical resistivity measurements. Mater. Sci. Eng. A 420, 245 (2006).

    Article  Google Scholar 

  36. L. Ding, Z. Jia, Y. Liu, Y. Weng, and Q. Liu: The influence of Cu addition and pre-straining on the natural aging and bake hardening response of Al–Mg–Si alloys. J. Alloys Compd. 688, 362 (2016).

    Article  CAS  Google Scholar 

  37. J. Kim, C. Daniel Marioara, R. Holmestad, E. Kobayashi, and T. Sato: Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al–Mg–Si alloys. Mater. Sci. Eng. A 560, 154 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) under the Grant No. CRDPJ 514651-17 and Rio Tinto Aluminum through the Research Chair in the Metallurgy of Aluminum Transformation at University of Quebec in Chicoutimi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Nikzad Khangholi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikzad Khangholi, S., Javidani, M., Maltais, A. et al. Optimization of mechanical properties and electrical conductivity in Al–Mg–Si 6201 alloys with different Mg/Si ratios. Journal of Materials Research 35, 2765–2776 (2020). https://doi.org/10.1557/jmr.2020.249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.249

Navigation