Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 27, 2020

Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means

  • Hong-Hu Chu , Tie-Hong Zhao and Yu-Ming Chu EMAIL logo
From the journal Mathematica Slovaca

Abstract

In the article, we present the best possible parameters α1, β1, α2, β2 ∈ ℝ and α3, β3 ∈ [1/2, 1] such that the double inequalities

α1C(a,b)+(1α1)A(a,b)<T3(a,b)<β1C(a,b)+(1β1)A(a,b),α2C(a,b)+(1α2)Q(a,b)<T3(a,b)<β2C(a,b)+(1β2)Q(a,b),C(α3;a,b)<T3(a,b)<C(β3;a,b)

hold for a, b > 0 with ab, and provide new bounds for the complete elliptic integral of the second kind, where A(a, b) = (a + b)/2 is the arithmetic mean, Q(a,b)=a2+b2/2 is the quadratic mean, C(a, b) = (a2 + b2)/(a + b) is the contra-harmonic mean, C(p; a, b) = C[pa + (1 – p)b, pb + (1 – p)a] is the one-parameter contra-harmonic mean and T3(a,b)=(2π0π/2a3cos2θ+b3sin2θdθ)2/3 is the Toader mean of order 3.


This research was supported by the Natural Science Foundation of China (Grant Nos. 11971142, 61673169, 11871202, 11701176, 11626101, 11601485) and the Natural Science Foundation of Zhejiang Province (Grant No. LY19A010012).


  1. (Communicated by Tomasz Natkaniec)

References

[1] Abbas Baloch, I.—Chu, Y.-M.: Petrović-type inequalities for harmonic h-convex Functions, J. Funct. Spaces 2020 (2020), Article ID 3075390, 7 pp.10.1155/2020/3075390Search in Google Scholar

[2] Alzer, H.—Qiu, S.-L.: Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math. 172 (2004), 289–312.10.1016/j.cam.2004.02.009Search in Google Scholar

[3] Anderson, G. D.—Vamanamurthy, M. K.— Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, New York, 1997.Search in Google Scholar

[4] Barnard, R. W.—Pearce, K. —Richards, K. C.: An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal. 31 (2000), 693–699.10.1137/S0036141098341575Search in Google Scholar

[5] Carlson, B. C.—Gustafson, J. L.: Asymptotic expansion of the first elliptic integral, SIAM J. Math. Anal. 16 (1985), 1072–1092.10.1137/0516080Search in Google Scholar

[6] Chu, H.-H.—Qian, W.-M.— Chu, Y.-M.—Song, Y.-Q.: Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means, J. Nonlinear Sci. Appl. 9 (2016), 3424–3432.10.22436/jnsa.009.05.126Search in Google Scholar

[7] Chu, Y.-M.—Qiu, Y.-F.—Wang, M.-K.: Hölder mean inequalities for the complete elliptic integrals, Integral Transforms Spec. Funct. 23 (2012), 521–527.10.1080/10652469.2011.609482Search in Google Scholar

[8] Chu, Y.-M.—Qiu, S.-L.—Wang, M.-K.: Sharp inequalities involving the power mean and complete elliptic integral of the first kind, Rocky Mountain J. Math. 43 (2013), 1489–1496.10.1216/RMJ-2013-43-5-1489Search in Google Scholar

[9] Chu, Y.-M.—Wang, M.-K.: Inequalities between arithmetic-geometric, Gini, and Toader means, Abstr. Appl. Anal. 2012 (2012), Article ID 830585, 11 pp.10.1155/2012/830585Search in Google Scholar

[10] Chu, Y.-M.—Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean, Results Math. 61 (2012), 223–229.10.1007/s00025-010-0090-9Search in Google Scholar

[11] Chu, Y.-M.—Wang, M.-K.—Qiu, Y.-F.: On Alzer and Qiu’s conjecture for complete elliptic integral and inverse hyperbolic tangent function, Abstr. Appl. Anal. 2011 (2011), Article ID 697547, 7 pp.10.1155/2011/697547Search in Google Scholar

[12] Chu, Y.-M.—Wang, M.-K.—Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci. 122 (2012), 41–51.10.1007/s12044-012-0062-ySearch in Google Scholar

[13] Chu, Y.-M.—Wang, M.-K.—Qiu, S.-L.—Qiu, Y.-F.: Sharp generalized Seiffert mean bounds for Toader mean, Abstr. Appl. Anal. 2011 (2011), Article ID 605259, 8 pp.10.1155/2011/605259Search in Google Scholar

[14] Duan, L.—Fang, X.-W.—Huang, C.-X.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting, Math. Methods Appl. Sci. 41 (2018), 1954–1965.10.1002/mma.4722Search in Google Scholar

[15] Huang, T.-R.—Han, B.-W.—Ma, X.-Y.—Chu, Y.-M.: Optimal bounds for the generalized Euler-Mascheroni constant, J. Inequal. Appl. 2018 (2018), Article 118, 9 pp.10.1186/s13660-018-1711-1Search in Google Scholar PubMed PubMed Central

[16] Huang, C.-X.—Liu, L.-Z.: Boundedness of multilinear singular integral operator with a non-smooth kernel and mean oscillation, Quaest. Math. 40 (2017), 295–312.10.2989/16073606.2017.1287136Search in Google Scholar

[17] Huang, C.-X.—Qiao, Y.-C.—Huang, L.-H.—Agarwal, R. P.: Dynamical behaviors of a food-chain model with stage structure and time delays, Adv. Difference Equ. 2018 (2018), Article 186, 26 pp.10.1186/s13662-018-1589-8Search in Google Scholar

[18] Huang, T.-R.—Tan, S.-Y.—Ma, X.-Y.—Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl. 2018 (2018), Article 239, 11 pp.Search in Google Scholar

[19] Huang, C.-X.—Yang, Z.-C.—Yi, T.-S.—Zou, X.-F.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, J. Differential Equations 256 (2014), 2101–2114.10.1016/j.jde.2013.12.015Search in Google Scholar

[20] Huang, C.-X.—Zhang, H.—Cao, J.-D.—Hu, H.-J.: Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 29 (2019), Article ID 1950091, 23 pp.10.1142/S0218127419500913Search in Google Scholar

[21] Huang, C.-X.—Zhang, H.—Huang, L.-H.:: Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent mortality term, Commun. Pure Appl. Anal. 18 (2019), 3337–3349.10.3934/cpaa.2019150Search in Google Scholar

[22] Kazi, H.—Neuman, E.: Inequalities and bounds for elliptic integrals, J. Approx. Theory 146(2) (2007), 212–226.10.1016/j.jat.2006.12.004Search in Google Scholar

[23] Latif, M. A.—Rashid, S.—Dragomir, S. S.—Chu, Y.-M.: Hermite-Hadamard type inequalities for co-ordinated convex and quasi-convex functions and their applications, J. Inequal. Appl. 2019 (2019), Article 317, 33 pp.10.1186/s13660-019-2272-7Search in Google Scholar

[24] Meng, M.-L.: Inequalities for a Class of New Arithmetic Means, Thesis (B.S.), Huzhou University, 2017 (in Chinese).Search in Google Scholar

[25] Neuman, E.: Bounds for symmetric elliptic integrals, J. Approx. Theory 122 (2003), 249–259.10.1016/S0021-9045(03)00077-7Search in Google Scholar

[26] Qian, W.-M.—Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters, J. Inequal. Appl. 2017 (2017), Article 274, 10 pp.10.1186/s13660-017-1550-5Search in Google Scholar PubMed PubMed Central

[27] Qian, W.-M.—He, Z.-Y.—Chu, Y.-M.: Approximation for the complete elliptic integral of the first kind, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114 (2020), https://doi.org/10.1007/s13398-020-00784-9, 12 pp.Search in Google Scholar

[28] Qian, W.-M.—He, Z.-Y.—Zhang, H.-W.—Chu, Y.-M.: Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean, J. Inequal. Appl. 2019 (2019), Article 168, 13 pp.10.1186/s13660-019-2124-5Search in Google Scholar

[29] Qian, W.-M.—Yang, Y.-Y.—Zhang, H.-W.—Chu, Y.-M.: Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl. 2019 (2019), Article 287, 12 pp.10.1186/s13660-019-2245-xSearch in Google Scholar

[30] Qian, W.-M.—Zhang, W.—Chu, Y.-M.: Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes 20 (2019), 1157–1166.10.18514/MMN.2019.2334Search in Google Scholar

[31] Qiu, S.-L.—Ma, X.-Y.—Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl. 474(2) (2019), 1306–1337.10.1016/j.jmaa.2019.02.018Search in Google Scholar

[32] Rafeeq, S.—Kalsoom, H.—Hussain, S.—Rashid, S.—Chu, Y.-M.: Delay dynamic double integral inequalities on time scales with applications, Adv. Difference Equ. 2020 (2020), Article 40, 32 pp.10.1186/s13662-020-2516-3Search in Google Scholar

[33] Tan, Y.-X.—Huang, C.-X.—Sun, B.—Wang, T.: Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition, J. Math. Anal. Appl. 458 (2018), 1115–1130.10.1016/j.jmaa.2017.09.045Search in Google Scholar

[34] Toader, Gh.: Some mean values related to the arithmetic-geometric mean, J. Math. Anal. Appl. 218 (1998), 358–368.10.1006/jmaa.1997.5766Search in Google Scholar

[35] Toader, Gh.: The monotonicity of a family of means, Bull. Appl. Comp. Math. 85-A (1998), 189–198.Search in Google Scholar

[36] Vuorinen, M.: Hypergeometric functions in geometric function theory. In: Special Functions and Differential Equations (Madras, 1997), Allied Publ., New Delhi, 1998, pp. 119–126.Search in Google Scholar

[37] Wang, J.-F.—Chen, X.-Y.—Huang, L.-H.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl. 469 (2019), 405–427.10.1016/j.jmaa.2018.09.024Search in Google Scholar

[38] Wang, M.-K.—Chu, H.-H.—Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl. 480(2) (2019), 9 pp.10.1016/j.jmaa.2019.123388Search in Google Scholar

[39] Wang, M.-K.—Chu, Y.-M.—Qiu, S.-L.—Jiang, Y.-P.: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means, J. Math. Anal. Appl. 388 (2012), 1141–1146.10.1016/j.jmaa.2011.10.063Search in Google Scholar

[40] Wang, M.-K.—Chu, Y.-M.—Qiu, Y.-F.—Qiu, S.-L.: An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett. 24 (2011), 887–890.10.1016/j.aml.2010.12.044Search in Google Scholar

[41] Wang, M.-K.—Chu, Y.-M.—Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl. 22 (2019), 601–617.10.7153/mia-2019-22-42Search in Google Scholar

[42] Wang, M.-K.—Chu, Y.-M.—Zhang, W.: Precise estimates for the solution of Ramanujan’s generalized modular equation, Ramanujan J. 49 (2019), 653–668.10.1007/s11139-018-0130-8Search in Google Scholar

[43] Wang, M.-K.—He, Z.-Y.—Chu, Y.-M.: Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Methods Funct. Theory 20 (2020), 111–124.10.1007/s40315-020-00298-wSearch in Google Scholar

[44] Wang, M. K.—Hong, M. Y.—Xu, Y.-F.—Shen, Z.-H.—Chu, Y.-M.: Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal. 14 (2020), 1–21.10.7153/jmi-2020-14-01Search in Google Scholar

[45] Wang, J.-F.—Huang, C.-X.—Huang, L.-H.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst. 33 (2019), 162–178.10.1016/j.nahs.2019.03.004Search in Google Scholar

[46] Wang, B.—Luo, C.-L.—Li, S.-H.—Chu, Y.-M.: Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114 (2020), 10 pages.10.1007/s13398-019-00734-0Search in Google Scholar

[47] Wang, J.-L.—Qian, W.-M.—He, Z.-Y.—Chu, Y.-M.: On approximating the Toader mean by other bivariate means, J. Funct. Spaces 2019 (2019), Article ID 6082413, 7 pp.10.1155/2019/6082413Search in Google Scholar

[48] Wang, G.-D.—Zhang, X.-H.—Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals, Rocky Mountain J. Math. 44 (2014), 1661–1667.10.1216/RMJ-2014-44-5-1661Search in Google Scholar

[49] Wang, M.-K.—Zhang, W.—Chu, Y.-M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci. 39B (2019), 1440–1450.10.1007/s10473-019-0520-zSearch in Google Scholar

[50] Yang, Z.-Y.—Chu, Y.-M.—Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind, Appl. Math. Comput. 348 (2019), 552–564.10.1016/j.amc.2018.12.025Search in Google Scholar

[51] Yang, Z.-H.—Qian, W.-M.—Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl. 21 (2018), 1185–1199.10.7153/mia-2018-21-82Search in Google Scholar

[52] Yang, Z.-H.—Qian, W.-M.—Chu, Y.-M.—Zhang, W.: Monotonicity rule for the quotient of two functions and its application, J. Inequal. Appl. 2017 (2017), Article 106, 13 pp.10.1186/s13660-017-1383-2Search in Google Scholar PubMed PubMed Central

[53] Yang, Z.-H.—Qian, W.-M.—Chu, Y.-M.—Zhang, W.: On rational bounds for the gamma function, J. Inequal. Appl. 2017 (2017), Article 210, 17 pp.10.1186/s13660-017-1484-ySearch in Google Scholar PubMed PubMed Central

[54] Yang, Z.-H.—Qian, W.-M.—Chu, Y.-M.—Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl. 462 (2018), 1714–1726.10.1016/j.jmaa.2018.03.005Search in Google Scholar

[55] Zaheer Ullah, S.—Adil Khan, M.—Chu, Y.-M.: A note on generalized convex functions, J. Inequal. Appl. 2019 (2019), Article 291, 10 pp.10.1186/s13660-019-2242-0Search in Google Scholar

[56] Zhao, T.-H.—Chu, Y.-M.—Wang, H.: Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal. 2011 (2011), Article ID 896483, 13 pp.10.1155/2011/896483Search in Google Scholar

[57] Zhao, T.-H.—Wang, M.-K.—Zhang, W.—Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl. 2018 (2018), Article 251, 15 pp.10.1186/s13660-018-1848-ySearch in Google Scholar PubMed PubMed Central

[58] Zhao, T.-H.—Zhou, B. C.—Wang, M.-K.—Chu, Y.-M.: On approximating the quasi-arithmetic mean, J. Inequal. Appl. 2019 (2019), Article 42, 12 pp.10.1186/s13660-019-1991-0Search in Google Scholar

Received: 2019-10-07
Accepted: 2020-01-14
Published Online: 2020-09-27
Published in Print: 2020-10-27

© 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/ms-2017-0417/html
Scroll to top button